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Résumé

La théorie du risque est l’étude des problématiques (à court terme et long terme) d’un portefeuille
d’assurance non-vie. Elle regroupe entre autres la théorie de la ruine et la réassurance. Cette dernière
consiste à transférer tout ou partie d’un risque d’une assurance vers une autre. La théorie de la
ruine, quant à elle, est l’analyse à long terme de la ruine d’une assurance (non-vie). L’étude des
différentes mesures de ruine a été unifiée par la fonction Gerber-Shiu. Elle est définie comme la fonc-
tion actualisée de pénalité espérée et permet d’étudier les mesures de ruine, telle que la probabilité
de ruine. Trois sujets sont abordés dans ce mémoire, avec comme points communs la réassurance et
la théorie de la ruine. Le premier chapitre se concentre sur la réassurance optimale, lorsqu’on utilise
le coefficient d’ajustement comme mesure de ruine. On montre que le coefficient d’ajustement est
une fonction unimodale du paramètre de rétention, le tout dans un modèle de dépendance entre
le coût et l’arrivée des sinistres. Le deuxième chapitre utilise la fonction de Gerber-Shiu dans le
modèle de Cramér-Lundberg lorsqu’on inclut de la réassurance proportionnelle. Enfin, le dernier
chapitre traite du calcul de la probabilité de ruine à l’aide des lois phase-type dans le modèle de
Sparre Andersen. En supposant des temps d’attente et des montants de sinistres de loi phase-type,
on obtient des expressions explicites de la probabilité de ruine avec une réassurance proportionnelle.
L’implémentation des calculs a été intégrée au package R actuar.

Mots-clés : Coefficient d’ajustement ; Coefficient de Lundberg ; Copules ; Théorie du
risque ; Modèles avec dépendencs ; Réassurance proportionnelle ; Réassurance excess
of loss ; Réassurance optimale ; Loi phase-type ; Fonction Gerber-Shiu



Abstract

Risk theory can be defined as the non-life insurance mathematics. Ruin theory and reinsurance
are parts of risk theory, which study respectively the long-term ruin of an insurance company and
the risk transfer from one insurance company to another. The analysis of ruin measures had been
unified by the Gerber-Shiu function, which allows us to study ruin measures such ruin probability.
We study three different topics, whose overall subjects are reinsurance and ruin theory. The first
chapter focuses on optimal reinsurance, when we use the adjustment coefficient as a ruin measure.
In a context of dependence between claim severity and claim frequency, we show the adjustment
coefficient is a unimodal function of the retention parameter, either for proportional or excess of
loss reinsurance. Chapter 2 deals with the Gerber-Shiu function with proportional reinsurance in
the well-known Cramér-Lundberg model. Finally, we give our attention on the computation of the
ruin probability thanks to phase-type distributions in the Sparre Andersen model. We derive ex-
plicit ruin probabilities, when assuming both claim sizes and inter-occurence times are phase-type
distributed. These computation has been inserted into the R package actuar.

Keywords : Adjustment coefficient; Lundberg coefficient; Copula; Ruin theory; De-
pendence models; Proportional reinsurance; Excess of loss reinsurance; Optimal rein-
surance; Phase-type distributions; Gerber-Shiu function
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Introduction

Risk theory studies all the aspects of a non-life insurance portfolio. In this wide area, ruin theory
focuses on the long term ruin of an insurance company with a such portfolio. Another part of risk
theory deals with the process of reinsurance, in which an insurance company transfers part or all
its risk to another insurance company (called the reinsurer). Reinsurance and ruin theory are parts
of risk theory which are closely related. Ruin theory is studied since more than a century. At the
beginning of the XXth century, Swedish actuaries Lundberg and Cramér created the fundamentals
of the classical continuous-time risk model (where claim arrival process is assumed to be a Poisson
process). This model had been widely extended during the last century. Andersen deeply improved
the Cramér-Lundberg model in 1957 when he considered the claim arrival process to be a renewal
process. Recently, Gerber & Shiu (1998) revisited the ruin theory with their expected discounted
penalty function. The so-called Gerber-Shiu function allows us to analyse ruin measures such as
the ruin probability, the behavior of the surplus at ruin, etc. . . Their works gived new insights into
ruin theory.

Since the mid nineties, models with dependence have been the interest of many researchers. For
instance, the work of Albrecher & Teugels (2006) deals with ruin probability when claim severity
and claim frequency are dependent. Other kinds of dependence have been studied such as two
dependent lines of business in a portfolio and claim severity and claim frequency dependent on a
common intensity variable.

Recent studies also concentrated on optimal reinsurance, whose aim is to choose the best rein-
surance according to a certain criterion. Waters (1983) and Centeno (2002b) use the adjustment
coefficient as a risk measure to choose optimal reinsurance, either with proportional reinsurance
or excess of loss reinsurance. They work in the Sparre Andersen model, where independence is
assumed between claim sizes and inter-occurence times.

Though phase-type distributions are known since nearly a century, its application in ruin theory
dates from the nineties. Phase-type distributions are a wide class of positive random variable
distributions, in which there are among others the exponential distribution, the Erlang distribution
and the hyper-exponential distribution. Asmussen (1992) presents the advantages to use phase-
type distributions to compute ruin probabilities in the Sparre Andersen model. He showed the ruin
probabilities have very easy (explicit) expressions when claim sizes are phase-type distributed.

This research memoir is divided into three independent chapters, but with common topics:
reinsurance and ruin theory. The first chapter extends the work of Centeno (2002b) by assuming
claim sizes and inter-occurence times are no longer independent. We use the adjustment coefficient
to find optimal reinsurance in a context of dependence between claim severity and claim frequency.

11
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In the second chapter, we introduce reinsurance directly into the surplus process. We study
in details the Gerber-Shiu function in the proportional reinsurance case. In the model of Cramér-
Lundberg with reinsurance, we derive many ruin-related quantities.

The third chapter concentrates on usage of phase-type distributions to obtain explicit ruin
probabilities. First, we present results on the effect of proportional reinsurance in the Sparre
Andersen model. Second, we implement ruin probability computations in the R package actuar.
The memoir then concludes with a discussion of possible further research.



Chapter 1

Optimal Reinsurance in a Context of
Dependence

In several studies on optimal reinsurance, the assumption of independence between claim sizes
and inter-occurence times facilitates the results deducted from the models. Many works has assumed
the case of independence on maximising the adjustment coefficient such as Waters (1983), Centeno
(2002a), Centeno (2002b) and Hald & Schmidli (2004). Centeno (1995) also deals with optimal
reinsurance (again in the case of independence) of the finite time ruin probability, when mitigating
a more sophisticated bound ∗ of this ruin probability.

When dependence between claim sizes and inter-occurence times is made, the studied ruin
models seldom focus on reinsurance (e.g. Albrecher & Teugels (2006) , Boudreault et al. (2006)
and Marceau (2007)). Only the work of Centeno (2005) deals with dependence in a context of
optimal reinsurance (excess of loss precisely), where the dependence is characterized through the
claim frequency.

So the study of optimal reinsurance in a context of dependence comes naturally. First, we give
our attention on optimal reinsurance retention level in a context of dependence, when the premium
is calculated according to the expected value principle at first, and then with other premium
calculation principles.

In this chapter, we consider a general risk model with (Nt)t∈R+ , the renewal process of number
of claims (i.e. Nt can be written as sup(n ∈ N, Tn ≤ t) with T0 = 0, Tn =

∑n
i=1Wi) and (Xi)i∈N? ,

the sequence of claim sizes. We assume that the couple of inter-occurence times and claim sizes,
(Wi, Xi)i∈N? , forms a sequence of independent and identically distributed (strictly) positive random
variables. If claim sizes Xi and waiting time Wi were assumed independent, this would be the Sparre
Andersen model. Then we define the ruin time of the insurance company as the first time where
the insurance surplus is negative

τu = inf(t > 0, u+ Ct− St < 0),

where u denotes the initial surplus, C the premium rate and St the total claim amount at time t

(i.e. St =
Nt∑
i=1

Xi).

∗. sometimes called the Gerber’s bound, cf. pp 139 of Gerber (1979)

13



14 CHAPTER 1. OPTIMAL REINSURANCE IN A CONTEXT OF DEPENDENCE

If ruin does not occur, τu = +∞. The premium rate C must satisfy the following condition, so
as to avoid the ruin almost surely: E[X − CW ] < 0, which is equivalent to

C = (1 + η)
E[X]

E[W ]
,

where η > 0 is the safety loading. It is well known that the adjustment coefficient R, which verifies
the equation E

[
er(X−CW )

]
= 1, provides an exponential bound to the infinite time ruin probability

ψ(u):

ψ(u)
4
= P (τu < +∞) ≤ e−Ru.

Thus, the ruin probability is controlled by the adjustment coefficient R (i.e. the adjustment coef-
ficient is a measure for the risk).

The main objective of this part is to present optimal reinsurance, which consists in maximising
the adjustment coefficient, with two kinds of reinsurance: proportional and excess of loss reinsur-
ance. Unlike previous works in this area, we work in a context of dependence between X and
W (resp. claim sizes and inter-occurence times), where the expected value premium calculation
principle is applied ∗. Therein, we prove that the adjustment coefficient R is a unimodal of function
of the retention levels, in general for proportional reinsurance and under a specific assumption for
excess of loss reinsurance.

There are various ways to integrate dependence. Firstly, we use copulas to structure the depen-
dence between claim size and claim frequency. From this approach, the issue of unimodality will
be studied in some “extreme” cases of dependence. Secondly, we will focus on two particular cases
of dependence: one, where the dependence is made on the conditional distribution of claim sizes;
and the other, where we use a common frailty approach on claim size and frequency distribution.

This chapter is divided into seven sections. In section 1.1, we will study the proportional
reinsurance case, whereas the section 1.2 focuses on excess of loss reinsurance. As the first two
parts give only theoretical results, numerical applications are carried out in section 1.3, when the
dependence is modelled through copulas. Then, in section 1.4, we will analyze three special cases of
dependence between X and W : comonotonic, independent and countermonotonic. Finally, section
1.5 and 1.6 present a conditional and a common frailty structure of dependence. The last section
concludes.

1.1 Proportional reinsurance

In this section, we focus on proportional reinsurance. The net (of reinsurance) annual claims
X(a) is defined as aX (i.e. a ∈]0, 1] is the retention rate). Given a retention rate, the net premium
per unit of time is expressed as follows

C(a) = (1 + η)
E[X]

E[W ]︸ ︷︷ ︸
insured risk

− (1 + ηR)
E[(1− a)X]

E[W ]︸ ︷︷ ︸
reinsured risk

, (1.1)

∗. at first, then other premium principles will be considered.
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where η and ηR denote the risk margin (supposed known and constant) respectively for the insurer
and the reinsurer. The risk margins satisfy the condition η < ηR, otherwise the insurer could get
rid of all his risk by insuring his whole portofolio. The premium rate defined in equation (1.1) can
be expressed in a simplified form :

C(a) =
E[X]

E[W ]
(η − ηR + a(1 + ηR)).

Let us notice this premium is a linear function of the retention rate a. So the derivative of the
premium, C ′(a), is constant : E[X]

E[W ](1+ηR). Note that the premium rate C(a) is not always positive,
this will be discussed in the following sub-section.

We are concerned with optimal reinsurance in context of dependence between claim sizes and
claim inter-occurence times. So we look for the optimal retention rate a? which maximizes the
adjusment coefficient R. The adjustment coefficient R is the unique positive root of the following
equation

E
[
er(X(a)−C(a)W )

]
= 1, (1.2)

which is equivalent to

h(r, a) = ln
(
E
[
er(X(a)−C(a)W )

])
= 0. (1.3)

We use the equation (1.3) rather than (1.2) because it eases the analysis of the adjustment coeffi-
cient.

1.1.1 Admissibility condition on ’a’

First, let us consider the condition on the retention rate a so that the equation (1.3) has a
strictly positive root, the adjustment coefficient. The partial derivative of h with respect to r is
given by

∂h

∂r
(r, a) =

E
[
(aX − C(a)W )er(X(a)−C(a)W )

]
E
[
er(X(a)−C(a)W )

] .

Since the function r 7→ h(r, a) is convex (cf. appendix A.1) and h(0, a) = 0, the root of equation
(1.3) exists if and only if ∂h

∂r (0, a) < 0 ∗. Let g be a 7→ ∂h
∂r (0, a), the first derivative of h with respect

to r as a function of a

g(a) = E [aX − C(a)W ] .

We must find the values of a where g(a) is strictly negative. As the function g is a (strictly)
decreasing function (g′(a) = −ηRE[X] < 0), g has at most one root. The equation g(a) = 0 is
equivalent to

aE[X]− C(a)E[W ] = 0,

which yields to †

a =
ηR − η
ηR

.

∗. otherwise the function r 7→ h(r, a) is a strictly increasing convex function. And the only root of (1.3) is 0.
†. cf. appendix A.2
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Let a0 be ηR−η
ηR

, which is positive since η < ηR. Therefore ∀a ∈]a0, 1], g(a) < 0 that is to say that
it exists R > 0 such that , h(R, a) = 0. Otherwise, the root of (1.3) is null. Furthermore, the
premium rate C(a) is strictly positive on ]a0, 1], since the condition g(a) < 0 is exactly the net
profit constraint, assumed to avoid the certain ruin.

1.1.2 Unimodality of R(a)

Let us study the optimal adjustment coefficient. From the previous subsection, we already
know that the adjustment coefficient R exists if and only if a ∈]a0, 1]. In the rest of this section,
we suppose that a ∈]a0, 1].

Unimodal functions

We recall the definition of a unimodal function φ on I.

Definition. φ : t 7→ φ(t) is a unimodal function on I if φ has a unique maximum reached for t = t?

on I and φ is a strictly increasing function on I∩] −∞, t?] and a strictly decreasing function on
I∩]t?,+∞].

The function φ can also be called unimodal if it is first strictly decreasing and then strictly
increasing (i.e. φ has a unique minimum on I), but this is not the case we study here. Furthermore,
we have the following sufficient condition ∗ of unimodality,

Proposition. If φ is a C2 function, φ is a unimodal function on I if the equation φ′(t) = 0 has a
unique root t?, such as φ′′(t?) < 0.

To prove that the retention function R(a) is unimodal, we show that this function verifies the
previous sufficient condition. Firstly, we prove that the equation ∂R

∂a (a) = 0 has a unique root a?.

Then, we show that ∂2R
∂a2

(a?) < 0.

Part 1

Using the implicit function theorem †, we get

∂R

∂a
(a) = −

∂h
∂a (r, a)
∂h
∂r (r, a)

∣∣∣∣∣
r=R

. (1.4)

This theorem requires the denominator to be non null. Indeed, we already know that r 7→ h(r, a)

is a convex function, since ∂2h
∂r2

(r, a) < 0 ‡. So, the latter function has a unique minimum on r̃, such

that h(r̃, a) < 0 since h(0, a) = 0 and ∂h
∂r (0, a) = E[X(a)−C(a)W ] < 0. Therefore, the adjustment

∗. cf. proof in appendix A.3
†. recalled in appendix A.4
‡. cf. appendix A.1
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coefficient R verifies R > r̃. Thus, we can conclude ∀a > 0, ∂h
∂r (R, a) > 0 since r 7→ h(r, a) is an

increasing function on [r̃,+∞[.

In consequence, the equation ∂R
∂a (a) = 0 is equivalent to

∂h

∂a
(r, a)

∣∣∣∣
r=R

= 0. (1.5)

Let us verify that the equation (1.5) has a unique root a?. The equation (1.5) is equivalent to

E
[
R(X − C ′(a)W )eR(X(a)−C(a)W )

]
E
[
eR(X(a)−C(a)W )

] = 0,

which yields to

E
[
(X − C ′(a)W )eR(X(a)−C(a)W )

]
= 0,

sinceR > 0 and E
[
eR(X(a)−C(a)W )

]
> 0. Let f be the function a 7→ E

[
(X − C ′(a)W )eR(X(a)−C(a)W )

]
,

defined as the left-hand side of the previous equation. As shown in appendix A.5, f has a unique
root. Note that, we have

f(a0) = −ηRE[X] < 0 and f(1) > 0 ∗,

Hence, f cancels exactly once on ]a0, 1], i.e. the equation (1.5) has a unique root a?.

Part 2

Now let us find the sign of the second derivative ∂2R
∂a2

at the optimal retention rate a?. From
1.4, the second derivative of R can be easy calculated when the first derivative is null. We get

∂2R

∂a2
(a?) = −

∂2h
∂a2

(r, a)
∂h
∂r (r, a)

∣∣∣∣∣
r=R,a=a?

.

The numerator is given by

∂2h

∂a2
(R, a?) =

E
[
R(X − C ′(a?)W )2eR(X(a?)−C(a?)W )

]
E
[
eR(X(a?)−C(a?)W )

]
−

(
E
[
R(X − C ′(a?)W )eR(X(a?)−C(a?)W )

]
E
[
eR(X(a?)−C(a?)W )

] )2

.

Since a? cancels the first derifative of R (hence the second member of the right-hand side), this
yields to

∂2h

∂a2
(R, a?) =

E
[
R2(X − C ′(a?)W )2eR(X(a?)−C(a?)W )

]
E
[
eR(X(a?)−C(a?)W )

] . (1.6)

Hence, we have ∂2h
∂a2

(R, a?) > 0. As a consequence, we have that the second derivative ∂2R
∂a2

(a?) has

opposite sign as ∂h
∂r (R, a?), which is positive as we have already seen. Thus, ∂

2R
∂a2

(a?) < 0, that is to

say the function a 7→ R(a) is unimodal on ]a0, 1], as the function a 7→ ∂R
∂a (a) cancels exactly once.

∗. cf. appendix A.5
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Conclusion on unimodality

To conclude on this optimatility issue of a 7→ R(a), we have that the adjustment coefficient R
in the case of proportional reinsurance is unimodal function of a on ]a0, 1]. Note that unimodality
(sufficient condition for maximization) ensures that numerical maximizations of R will converge,
which is particularly useful in practice.

1.1.3 Using other premium calculation principles

Until now, we have studied the adjustment coefficient R, when the premium are calculated
according to the expected value principle. Let us study the following premium calculation principles:

– variance premium principle : C = E[X] + ηV ar[X];
– standard deviation premium principle : C = E[X] + η

√
V ar[X];

– exponential premium principle : C =
ln(E[eηX ])

η .
These premium principles are defined without reinsurance for an annual risk X. More details on
their properties can be found in the Encyclopedia of Actuarial Science of Teugels & Sundt (2006).
Let us study those premiums with proportional reinsurance with a retention rate a (as usual with
η < ηR the loading coefficients).

The differences in the demonstration of unimodality of R(a) between the expected value pre-
mium principle and other premium principles appear (1) in the function g(a), (whose sign makes
R exist or not); (2) the function f(a) (whose number of roots is the number of (local) maxima)

and (3) the second derivative ∂2h
∂a2

(R, a?) of R(a) (whose sign ensures the optima to be maxima or
minima). For all premium principles, we have to study these three points.

Variance premium principle

The variance premium principle with proportional reinsurance is defined as follows

C(a) =
E[X] + ηV ar[X]

E[W ]
− E[X(1− a)] + ηRV ar[X(1− a)]

E[W ]
=
aE[X] + V ar[X](η − (1− a)2ηR)

E[W ]
.

The derivatives of C(a) are

C ′(a) =
E[X] + 2(1− a)ηRV ar[X]

E[W ]
and C ′′(a) =

−2ηRV ar[X]

E[W ]
< 0.

First, we need to study the admissibility condition on the retention rate, so that the ad-
jusmten coefficient R(a) exists. As in the previous sub-section, we defined the function g(a) =
E [aX − C(a)W ]. It can be expressed as

g(a) = −V ar[X](η − (1− a)2ηR).

Since g(0) = −(η − ηR)V ar[X] > 0, g is strictly decreasing ∗ convex function, g has a unique
positive root a0 on [0, 1], such as ∀a > a0, g(a) < 0. In this case, we have an explicit expression of

a0 = 1−
√

η
ηR

> 0. Thus, the adjustment coefficent R(a) exists on ]a0, 1].

∗. g′(a) = −2(1− a)ηRV ar[X] ≤ 0 and g′′(a) = 2ηRV ar[X].
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Secondly, we have the following expression for ’f ’

f(a) = E
[
(X − C ′(a)W )eR(X(a)−C(a)W )

]
,

with C ′(a) = E[X]+2(1−a)ηRV ar[X]
E[W ] . Differentiating f , we have

f ′(a) = RE
[
(X − C ′(a)W )2eR(X(a)−C(a)W )

]
− C ′′(a)E

[
eR(X(a)−C(a)W )

]
+R′(a)E

[
(X − C ′(a)W )(X(a)− C(a)W )eR(X(a)−C(a)W )

]
.

Since C ′′(a) < 0, f ′(a) is strictly positive when f nullifies (f(a) = 0 ⇔ R′(a) = 0). Furthermore,
we have

f(a0)
4
= E

[
(X − C ′(a0)W )e0

]
= −2(1− a0)V ar[X] < 0,

and

f(1) = E
[
(X − C ′(1)W )eR(X−C(1)W )

]
>
E
[
(X − C(1)W )eR(X−C(1)W )

]
E
[
eR(X−C(1)W )

] > 0.

Indeed, we have when a = 1

C ′(1) =
E[X]

E[W ]
<
E[X] + ηV ar[X]

E[W ]
= C(1).

So f(1) is minorated by ∂h
∂r (R, a)

∣∣
a=1

, which is postive as we have already seen in the previous
sub-section. Therefore, f is a continuous function, which starts from f(a0) < 0 to f(1) > 0 and is
a strictly increasing function, when f nullifies. Hence, f cancels once, say a?.

Finally, the second derivative of R (when the first one cancels) has the opposite sign of

∂2h

∂a2
(R, a?) =

E
[
R(R(X − C ′(a?)W )2 − C ′′(a)W )eR(X(a?)−C(a?)W )

]
E
[
eR(X(a?)−C(a?)W )

] .

Note that the equation (1.6) is no longer verified since C ′′(a) 6= 0. But as C ′′(a) < 0, we have

that ∂2h
∂a2

(R, a?) > 0, hence R′′(a?) < 0. So we can conclude the adjustment coefficient R(a) is still
unimodal on ]a0, 1] with the variance premium calculation principle.

Standard deviation premium principle

The standard deviation premium principle with proportional reinsurance is given by

C(a) =
E[X] + η

√
V ar[X]

E[W ]
−
E[X(1− a)] + ηR

√
V ar(X(1− a))

E[W ]

=
aE[X] +

√
V ar[X](η − (1− a)ηR)

E[W ]
.

The derivatives of C(a) are

C ′(a) =
E[X] + ηR

√
V ar[X]

E[W ]
and C ′′(a) = 0.
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Let us study the ’g’ function with this premium principle. g is given by

g(a) = −
√
V ar[X](η − (1− a)ηR),

which is a strictly decreasing ∗ function on [0, 1]. Thus there is a unique a0 ∈]0, 1[, such that
∀a > a0, g(a) < 0. Here, an explicit expression of the root can be found: a0 = ηR−η

ηR
> 0. Hence,

the adjustment coefficient R(a) exists on ]a0, 1].

The study of the ’f ’ function is very similar as for the expected value principle, since C ′′(a) = 0.
Indeed, we have f(a0) = −ηR

√
V ar[X] < 0. f(1) is given by

f(1) = E
[
(X − C ′(1)W )eR(X−C(1)W )

]
>
E
[
(X − C ′(1)W )eR(X−C′(1)W )

]
E
[
eR(X−C′(1)W )

] ,

using

C ′(1) =
E[X] + ηR

√
V ar[X]

E[W ]
>
E[X] + η

√
V ar[X]

E[W ]
= C(1).

Thus, f(1) is minorated by ∂h
∂r (R, a)

∣∣
a=1

> 0 †, if we consider that R(1) (no reinsurance) is calcu-

lated with a loading coefficient ηR
‡. Therefore, f cancels once on ]a0, 1],

And finally, the second derivative of R is negative, since the equation (1.6) is still verified
(C ′′(a) = 0). Thus, we conclude that the adjustment coefficient R(a) is still unimodal on ]a0, 1]
with the standard deviation premium calculation principle.

Exponential premium principle

The exponential premium principle with proportional reinsurance is given by

C(a) =
ln
(
E
[
eηX

])
ηE[W ]

−
ln
(
E
[
eηR(1−a)X

])
ηRE[W ]

.

The derivatives of C(a) are

C ′(a) =
E
[
XeηR(1−a)X

]
E[W ]E

[
eηR(1−a)X

] ,
and

C ′′(a) =
−ηR
E[W ]

E [X2eηR(1−a)X
]

E
[
eηR(1−a)X

] −(E [XeηR(1−a)X
]

E
[
eηR(1−a)X

] )2
 .

We have C ′′(a) < 0 since the term between brackets is strictly positive because it is a variance of
an Esscher transform.

∗. g′(a) = −
√
V ar[X]ηR < 0.

†. cf. previous subsection

‡. C′(1) is equivalent to the premium C̃(1) with a loading coefficient ηR. Hence
E
[
(X−C′(1)W )eR(X−C′(1)W )

]
E[eR(X−C′(1)W )]

=

E
[
(X−C̃(1)W )eR(X−C̃(1)W )

]
E
[
eR(X−C̃(1)W )

] = ∂h̃
∂r

(R, a)
∣∣∣
a=1
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From the previous equations, we get

g(a) = E[X]− 1

η
ln
(
E
[
eηX

])
+

1

ηR
ln
(
E
[
eηR(1−a)X

])
.

Thus

g′(a) = E[X]−
E
[
XeηR(1−a)X

]
E
[
eηR(1−a)X

] = −Cov(X, eηR(1−a)X)

E
[
eηR(1−a)X

] ,

which is negative ∗. Furthermore, we have

g(0) =
1

ηR
ln
(
E
[
eηRX

])
− 1

η
ln
(
E
[
eηX

])
> 0 and g(1) = E[X]− 1

η
ln
(
E
[
eηX

])
< 0,

since the exponential premium principle is an increasing function of the loading coefficient η, and
it verifies the positive risk loading constraint. Therefore, g is a decreasing function, which nullifies
once on [0, 1], say a0. So, the adjustment coefficient R(a) exists on ]a0, 1] with a0 > 0.

Let us study the ’f ’ function. We recall that f is defined as E
[
(X − C ′(a)W )eR(aX−C(a)W )

]
.

We have

f(a0) = E
[
(X − C ′(a0)W )e0

]
= g′(a0) < 0,

and

C ′(1) =
E[X]

E[W ]
<

1

η
ln
(
E
[
eηX

])
= C(1),

by using the Jensen inequality with ϕ(x) = eηx. Hence, we also have f(1) > 0. Using the same
argument as the one used for the variance premium principle (where C ′′(a) < 0), f has a unique
root a?, and so the first derivative R′(a). Again, we used what was done for the variance premium
principle, i.e.

∂2h

∂a2
(R, a?) =

E
[
R(R(X − C ′(a?)W )2 − C ′′(a)W )eR(X(a?)−C(a?)W )

]
E
[
eR(X(a?)−C(a?)W )

] ,

which is positive because of C ′′(a) < 0. Hence, the second derivative of R(a) is negative. And so,
the adjustment coefficient is a unimodal function on ]a0, 1] with the exponential premium principle.

1.2 Excess of loss reinsurance

This section is the analog of the previous section, when the insurer takes excess of loss reinsur-
ance. Let L ∈ R+ be the retention limit of the insurer. Once reinsured, the insures keeps the risk
X(L) = X ∧ L = min(X,L). As in the previous section, the risk margins η and ηR are known and
constant. The net premium per unit of time C(L) is expressed as follows:

C(L) = (1 + η)
E[X]

E[W ]︸ ︷︷ ︸
insured risk

− (1 + ηR)
E [(X − L)+]

E[W ]︸ ︷︷ ︸
reinsured risk

, (1.7)

∗. cf. appendix A.6



22 CHAPTER 1. OPTIMAL REINSURANCE IN A CONTEXT OF DEPENDENCE

where we again assume that η < ηR. The derivatives of C are given by

C ′(L) = (1 + ηR)
FX(L)

E[W ]
∗ and C ′′(L) = −(1 + ηR)

fX(L)

E[W ]
,

when the density fX exists and FX stands for the survival function of random variable X.
Our main focus is to maximize the adjustement coefficient R, which is the root of the well known
equation

h(r, L) = ln
(
E[er(X(L)−C(L)W )]

)
= 0, (1.8)

which we call the adjustment coefficient equation (even if in the literature, the adjustment coefficient
equation refers to E[er(X(L)−C(L)W )] = 1).

1.2.1 Admissibility condition on ’L’

Consider the function g defined as

L 7→ ∂h

∂r
(0, L) = E[X ∧ L− C(L)W ].

The adjustment coefficient equation (1.8) has a positive root if and only if g(L) < 0 (i.e. ∂h
∂r (0, L) <

0), because of the same reason as in the case of proportional reinsurance (i.e. convexity of r 7→
h(r, L) in appendix A.1). The function g can be expressed in the following form

g(L) = (ηR − η)E[X]− ηRE[X ∧ L],

where the limited expected value E[X ∧ L] is equal to
∫ L

0 FX(x)dx. g is a strictly decreasing
function since g′(L) = −ηRFX(L) < 0 †. As

g(0) = (ηR − η)E[X] > 0 and g(L) −→
L→+∞

−ηE[X] < 0,

it exists L0 > 0 which nullifies the function g. That is to say, we are ensured that there is L0 > 0
such that ∀L > L0, g(L) < 0. This finishes the proof, that the equation (1.8) has a positive root
when L ∈ ]L0,+∞[. Numerically, we found that L0 is equal to 0.4054 and 0.3544 respectively when
X ∼ E(1) and X ∼ G(2, 2) ‡.

1.2.2 Unimodality of R(L)

We know from the previous subsection, that the optimal adjustment coefficient R exist if and
only if L > L0. The approach to show, that the adjustement coefficient R is unimodal, is the same
as the previous section. First, we must ensure that the first derivative ∂R

∂L cancels exactly once on

L?. And then, we show that ∂2R
∂L2 (L?) < 0.

∗. using appendix B.7 and E [(X − L)+] =
∫ +∞
L

FX(x)dx

†. using appendix B.7 and E[X ∧ L] =
∫ L
0
FX(x)dx

‡. the 2 numerical examples considered in the next section. In the previous section, we have a0 = 1/3.
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Part 1

Using the implicit function theorem ∗, we get

∂R

∂L
(L) = −

∂h
∂L(r, L)
∂h
∂r (r, L)

∣∣∣∣∣
r=R

. (1.9)

Using the same arguments as the previous section, we have that ∂R
∂L (L) = 0 is equivalent to

∂h
∂L(R,L) = 0. So the optimal retention limit L? is such that

∂h

∂L
(R,L?) = 0.

As shown in appendix A.7, ∂X∧L
∂L = 1(X>L), thus we get

E
[
R(1(X>L?) − C ′(L?)W )eR(X(L?)−C(L?)W )

]
E
[
eR(X(L?)−C(L?)W )

] = 0,

which is equivalent to

E
[
(1(X>L?) − C ′(L?)W )eR(X(L?)−C(L?)W )

]
︸ ︷︷ ︸

f(L?)

= 0. (1.10)

The equation (1.10) does not always have a unique root. As shown in appendix A.8, the function
f defined as the right-hand side of the previous equation has sometimes more than one root, or no
roots at all. In the following, we assume now that f has exactly one root L? on ]L0,+∞[.

Part 2

The sign of ∂2R
∂L2 (L?) can be found when differentiating (1.9). We get

∂2R

∂L2
= −

∂2h
∂L2 (r, L)
∂h
∂r (r, L)

∣∣∣∣∣
r=R,L=L?

.

We know that ∂h
∂r (R,L) > 0 from the previous section. So the sign of ∂2R

∂L2 (L) is the same as

∂2h

∂L2
(R,L?) =

E
[
R(R(1(X>L?) − C ′(L?)W )2 − C ′′(L)W )eR(X(L?)−C(L?)W )

]
E
[
eR(X(L?)−C(L?)W )

]
−

(
E
[
R(1(X>L?) − C ′(L?)W )eR(X(L?)−C(L?)W )

]
E
[
eR(X(L?)−C(L?)W )

] )2

.

As L? cancels the equation (1.10), we have

∂2h

∂L2
(R,L?) =

E
[
R(R(1(X>L?) − C ′(L?)W )2 − C ′′(L)W )eR(X(L?)−C(L?)W )

]
E
[
eR(X(L?)−C(L?)W )

] .

∗. cf. appendix A.4
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Note that the previous calculi are only valid if X is continuous, in order that the second derivative
C ′′ exists:

C ′′(L) = −(1 + ηR)
fX(L)

E[W ]
< 0,

and
∂1(X>L?)

∂L is almost surely null (cf. appendix A.7). Therefore, we obtain

∂2h

∂L2
(R,L?) =

E
[
R(R(1(X>L?) − C ′(L?)W )2 + (1 + ηR)fX(L)

E[W ] W )eR(X(L?)−C(L?)W )
]

E
[
eR(X(L?)−C(L?)W )

] > 0,

since P (1(X>L?) = C ′(L?)W ) = 0 when X and W are continuous. Consequently, we have that the

second derivative ∂2R
∂L2 (L?) has the opposite sign as ∂h

∂r (R,L?), which is positive as we have already

seen. Hence, ∂2R
∂L2 (L?) < 0, that is to say the function L 7→ R(L) is unimodal on ]L0,+∞[, when

the first part of the sufficient condition is realised.

Conclusion on unimodality

Unlike the proportional case, we are not guarenteed that L 7→ R(L) is unimodal. However the
unimodality is ensured if the equation

E
[
(1(X>L) − C ′(L)W )eR(X(L)−C(L)W )

]
= 0

has a unique root L?. Using the fact ∂2R
∂L2 (L?) < 0, the function L 7→ R(L) is unimodal on ]L0,+∞[.

Otherwise all the roots L? are local maxima.

1.2.3 Using other premium calculation principles

As done in the proportional reinsurance case, we study the adjustment coefficient R with other
premium principles. We consider the variance, the standard deviation and the exponential premium
principles. Let us study those premiums with excess of loss reinsurance with a retention rate L (as
usual by η and ηR the loading coefficients). We suppose, as for the expected value principle, that
the density of the claim size X exists.

Variance premium principle

The variance premium principle with excess of loss reinsurance is defined as follows

C(L) =
E[X] + ηV ar[X]

E[W ]
− E[(X − L)+] + ηRV ar[(X − L)+]

E[W ]

=
E[X ∧ L]

E[W ]
+
ηV ar[X]− ηRV ar[(X − L)+]

E[W ]
.

The derivatives of C(L) are

C ′(L) =
FX(L) + 2ηRFX(L)E[(X − L)+]

E[W ]
,
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and

C ′′(L) =
−fX(L)− 2ηRFX(L)FX(L) + 2ηRfX(L)E[(X − L)+]

E[W ]
.

As in the previous section with proportional reinsurance, we need to study the ’g’ and ’f ’
functions, and the sign of the second derivative of the adjustment coefficient. With the variance
premium principle, we have

g(L) = −ηV ar[X] + ηRV ar[(X − L)+] and g′(L) = −2ηRFX(L)E[(X − L)+].

Hence g is a strictly decreasing function with g(0) = (ηR−η)V ar[X] > 0 and g tends to−ηV ar[X] <
0 when L tends to +∞. So there is a unique L0, such that ∀L > L0, g(L) < 0, i.e. R(L) exists on
]L0,+∞[.

Studying the number of roots of the f(L) is very complicated, where f is defined as In the case
of excess of loss reinsurance, f is defined as

f(L) = E
[
(1(X>L) − C ′(L)W )eR(X(L)−C(L)W )

]
.

Let us notice lim
L−→+∞

f(L) = 0 since both functions 1(X>L) and C ′(L) = FX(L)+2ηRFX(L)E[(X−L)+]
E[W ]

tends to null. But the solution L = +∞ is not a solution mathematically and in practice. Because
this involves that the insurer takes no reinsurance at all. We have also

f(L0)
4
= E

[
(1(X>L) − C ′(L)W )e0

]
= −2ηRFX(L0)E[(X − L0)+] < 0.

The study of the derivative of f is the same as when using expected value principle in appendix
A.8. We are not ensured that f is an increasing function, and so there is a unique L? ∈]L0,+∞[
which nullifies f .

The study of the second derivative of f reveals the same impossibility to know its sign. There
may be some case where f is an increasing on ]L0,+∞[, hence there is no root, which means the
“optimal” ∗ retention limit L? will be +∞. Note in this case, we are ensured the L 7→ R(L) has a
horizontal infinite branch when L tends to +∞. Otherwise, the root of f may be unique †.

Finally, the study of the sign of R′′(L) is also problematic. We recall its sign is the opposite
sign of

∂2h

∂L2
(R,L?) =

E
[
R(R(1(X>L?) − C ′(L?)W )2 − C ′′(L)W )eR(X(L?)−C(L?)W )

]
E
[
eR(X(L?)−C(L?)W )

] . (1.11)

However, the second derivative of the premium rate, C ′′(L), is not always negative. Therefore, we
are not ensured that R(L?) is a maximum, unlike the case of expected value premiums, since (1.11)
may be negative. But, we may reasonably think the term (1(X>L?)−C ′(L?)W )2 to be greater than
C ′′(L)W in average.

This leads to the conclusion that the unimodality of R(L) is not guarenteed even if the f
function cancels once.

∗. in the sense of the one, which nullifies the first derivative of R(L)
†. cf. at the end of appendix A.5
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Standard deviation premium principle

The standard deviation premium principle with excess of loss reinsurance is given by

C(L) =
E[X] + η

√
V ar(X)

E[W ]
−
E[(X − L)+] + ηR

√
V ar[(X − L)+]

E[W ]

=
E[X ∧ L]

E[W ]
+
η
√
V ar[X]− ηR

√
V ar[(X − L)+]

E[W ]
.

The derivatives of C(L) are

C ′(L) =
FX(L)

E[W ]
+ ηR

E[(X − L)+]FX(L)

E[W ]
√
V ar[(X − L)+]

,

and

C ′′(L) = −fX(L)

E[W ]
+ ηR

−FX(L)FX(L) + fX(L)E[(X − L)+]

E[W ]
√
V ar[(X − L)+]

− ηR
(E[(X − L)+]FX(L))2

E[W ] (V ar[(X − L)+])3/2
.

The study of ’g’ and ’f ’ function is necessary.

g(L) = −η
√
V ar[X] + ηR

√
V ar[(X − L)+] and g′(L) = −ηR

E[(X − L)+]FX(L)√
V ar[(X − L)+]

< 0.

Since g(0) = (ηR − η)
√
V ar[X] > 0 and g tends to −η

√
V ar[X] < 0 when L tends to +∞, g has

a unique L0 such that R(L) is only defined on ]L0,+∞[.

The problem of the number of roots of f still persists with the standard deviation premium ∗.
Furthermore, the derivative C ′′(L) is not always negative, hence (1.11) may be negative. As for
the variance principle, the function L 7→ R(L) is not always unimodal, even if f nullifies once.

Exponential premium principle

The exponential premium principle with excess of loss reinsurance is given by

C(L) =
ln
(
E
[
eηX

])
ηE[W ]

−
ln
(
E
[
eηR(X−L)+

])
ηRE[W ]

.

The derivatives of C(L) are

C ′(L) =
1

E[W ]
+

fX(L)

ηRE[W ]E
[
eηR(X−L)+

] ,
and

C ′′(L) =
f ′X(L) + ηRfX(L)

ηRE[W ]E
[
eηR(X−L)+

] +
f2
X(L)

ηRE[W ]E2
[
eηR(X−L)+

] .
∗. cf. at the end of appendix A.5
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The function g is given by

g(L) = E[X ∧ L]−
ln
(
E
[
eηX

])
η

+
ln
(
E
[
eηR(X−L)+

])
ηR

,

and its derivative is

g′(L) = −FX(L)− fX(L)

ηRE
[
eηR(X−L)+

] < 0.

Since g(0) is positive and g tends to − ln(E[eηX ])
ηE[W ] < 0 when L tends to +∞, the uniqueness of

the real L0 > 0 such that ∀L > L0, g(L) < 0, i.e. R(L) exists on ]L0,+∞[.

Again, the number of roots of f is problematic, as the sign of R′′(L) when the first derivative
R′(L) nullifies, since C ′′(L) ≥ 0. Hence, L 7→ R(L) is not always unimodal.

In conclusion for all these three other premium principles (i.e. variance, standard deviation
and exponential principle), there is no guarantees, that L 7→ R(L) is unimodal on ]L0,+∞[, even
if its first derivative nullifies exactly once. That’s the main difference with the expected value
principle. The following numerical applications will show various examples or counter-examples of
unimodality of the adjustment coefficient R(L) ∗.

1.3 Modelling dependence through copulas

1.3.1 Numerical applications

For the following numerical applications, we models dependence through copulas. Exactly, we
will study the optimal retention parameter θ? (either a? or L?) with three different copulas and
four different marginal distributions. The studied copulas, which will structure the dependence of
the bivariate process (W,X), are :

– the Frank copula :

CFα (u, v) =
−1

α
ln

(
1 +

(e−αu − 1)(e−αv − 1)

e−α − 1

)
;

– the Clayton copula :

CCα (u, v) =
(
u−α + v−α − 1

)−1
α ;

– the Gaussian copula :
CNα (u, v) = Hα(Φ−1(u),Φ−1(v));

where Φ stands for the standard normal distribution function andHα the distribution function

of a Gaussian vector of mean

(
0
0

)
and of covariance matrix

(
1 α
α 1

)
.

We recall that if X and W has a dependence through a bivariate copula C, we have FX,W (x,w) =
C(FX(x), FW (w)). More details on copulas can be found in Nelsen (2006). As for the four different
cases of marginal distributions, we study

∗. cf. graphs 1.17, 1.18.
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– (Xi)i≥0 ∼ E(1) and (Wi)i≥0 ∼ E(1);
– (Xi)i≥0 ∼ G(2, 2) and (Wi)i≥0 ∼ E(1);
– (Xi)i≥0 ∼ G(2, 2) and (Wi)i≥0 ∼ G(2, 2);
– (Xi)i≥0 ∼ E(1) and (Wi)i≥0 ∼ G(2, 2).

Note that we will always put the claim size type in first and the inter-occurence time in second, in the
legends of the following graphics (e.g. exp(1)/exp(1) is the first case of marginal distributions).

Since there is no explicit expressions of the Lundberg equation (hence the adjustment coef-
ficient), two approximation methods have been used. These two methods are presented in the
two following paragraphs. The first approach uses simulations of the bivariate process (Wi, Xi)i
to compute the adjustment coefficient. In the second method, we discretize the joint distribution
function in order to compute the mass probability function.

Using simulation

The main idea of this method is to simulate a bivariate process Ui = (ui,1, ui,2)i≥0 which have a
particular copula dependence structure. And then, using the inverse function method, we simulate
the marginals W and X. The first step has been carried out thanks to the R ∗ package copula †,
which produces realisations of Ui. As for the second one, quantile functions of the exponential and
the gamma distribution, implemented in R by the functions qexp and qgamma, are used.

Since we have simulated n samples (wi, xi)i of the bivariate process (Wi, Xi)i, we minimize the
squarred differences between left hand side and right hand side of equation (1.3) or (1.8). That is
to say we minimize the following empirical function to find the R adjustment coefficient :

r 7→

(
1

n

n∑
i=1

er(xi(θ)−C(θ)wi) − 1

)2

.

Then we maximize the adjustment coefficient R with respect to the retention parameter θ. The
both optimizations have been achieved with the optimize function of R.

Discretization of the joint distribution function

The main objective of this approach is to compute the mass probability function of the joint
distribution function of (W,X), which is given by :

fW,X(ti, xj) ≈


FW,X(ti, xj)− FW,X(ti, xj−1)− FW,X(ti−1, xj) + FW,X(ti−1, xj−1) if i, j ≥ 1
FW,X(ti, xj)− FW,X(ti, xj−1) if i = 0
FW,X(ti, xj)− FW,X(ti−1, xj) if j = 0
FW,X(0, 0) if i, j = 0

,

where the points (ti, xj)
0≤j≤nX
0≤i≤nW is the grid of discretization with nX + 1 points of space and nW + 1

points of “times”. We also use the R package copula ‡ package to compute the joint distribution

∗. the statistical software R (2007)
†. Yan & Kojadinovic (2007)
‡. we rely on the quality of the R package copula of Yan & Kojadinovic (2007)
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function FW,X for the different copulas, using FW,X(w, x) = Cα (FW (w), FX(x)). As we have the
mass probability function, we again minimize the squarred difference of equation (1.3) or (1.8) to
find the R adjustment coefficient i.e. the following empirical function

r 7→

nW∑
i=0

nX∑
j=0

er(xj(θ)−C(θ)ti)fW,X(ti, xj)− 1

2

.

Subsequently, we maximize the adjustment coefficient R with respect to the retention limit θ.

Note that if not mentioned otherwise, we suppose the premium to be calculated according to
the expected value principle.

1.3.2 Proportional reinsurance

Unimodality

First, let us verify numerically that the function a 7→ R(a) is unimodal. We plot this function
for the three studied copulas. The parameters of copulas are 2.5 for the Clayton, 4.5 for the Frank
copula and 0.5 for the Gaussian copula. These parameters have been chosen so as to have a Pearson
correlation coefficient between claim sizes and claim arrivals around 0.5 ∗. For this example and
all that will follow, we suppose the risk margin are η = 0.2, ηR = 0.3 and n = 10000 (simulation
number). Futhermore, marginals distribution parameters are such that the expectation is 1.

As expected, the graphs of figure (1.1) shows clearly that the function a 7→ R(a) is unimodal for
all copulas and marginals. These graphs have been computed by the simulation method. We can no-
tice that the hump of the curve (a,R(a)) is greater when marginals are gamma(2,2)/gamma(2,2)
than when the distributions are exp(1)/exp(1).

Impact of the parameter dependence α on the optimal retention rate a?

The results obtained through simulations are first presented. The different parameters are:
η = 0.2, ηR = 0.3, n = 10000 (simulation number).

∗. the Pearson correlation is defined as ρ(X,Y ) = Cov(X,Y )√
V ar[X]V ar[Y ]

, hence it depends on the tails of the distribution of

X and Y through standard deviations. Thus the Pearson correlation is (slightly) different between exp(1)/exp(1)
and exp(1)/gamma(2,2). There is no explicit relation between the α parameter of a copula and the Pearson
correlation, that’s why we use this approximation.
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Figure 1.1: Adjustment coefficient
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Figure 1.2: Graph of α 7→ a?(α) for the Frank copula

In the figures (1.2,1.3), an overall decreasing trend of a? can be observed for all types of marginals
except the gamma(2,2)/exp(1) case. When the dependence structure is modelled through a
Gaussian copula (fig 1.4), it is quite difficult to see any trends. Moreover, the gamma(2,2)/exp(1)
marginals case shows that a? is increasing with α. But it seems that the more the dependence α
between inter-occurence times and claim sizes is extreme (i.e. times between two “extreme” claims
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Figure 1.3: Graph of α 7→ a?(α) for the Clayton copula

−0.5 0.0 0.5

0.
61

0.
62

0.
63

0.
64

a* in function of alpha [gauss copula]

alpha

a*

exp(1)/exp(1)
exp(1)/gamma(2,2)
gamma(2,2)/gamma(2,2)
gamma(2,2)/exp(1)

Figure 1.4: Graph of α 7→ a?(α) for the Gaussian copula

is very long), the more the optimal retention rate a? is lower. And so the more, the insurance
company “has” (optimally) to reinsure the risk in order to have the maximum safety.
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The following results have been carried out by discretization of the joint distribution function.
We discretized the claim size X and the claim frequency W on the interval [0; 20× E[X or W ]] or
[0; 10× E[X or W ]], whether the distribution of X (or W ) is exponential or gamma (respectively).
The numbers of points of discretization nX and nW are (125, 125) when X ∼ E(1) and W ∼ E(1);
(150, 100) when X ∼ G(2, 2) and W ∼ E(1); (125, 125) X ∼ G(2, 2) and W ∼ G(2, 2) and (100, 150)
X ∼ E(1) and W ∼ G(2, 2). Hence, the steps of the discretization are respectively (0.16, 0.16),
(0.06, 0.01), (0.08, 0.08) and (0.01, 0.06).

−20 −10 0 10 20

0.
50

0.
55

0.
60

0.
65

a* in function of alpha [frank copula]

alpha

a*

exp(1)/exp(1)
exp(1)/gamma(2,2)
gamma(2,2)/gamma(2,2)
gamma(2,2)/exp(1)

Figure 1.5: Graph of α 7→ a?(α) for the Frank copula
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Figure 1.7: Graph of α 7→ a?(α) for the Gaussian copula

The first conclusion of the results, plotted in figures (1.5, 1.6 , 1.7), is the curve α 7→ a?(α)
has lost its erratic behavior. Now we can clearly see the decreasing trend of α 7→ a?(α). But for
the Archimedian copulas (i.e. Frank and Clayton copulas), the decreasing trend of α 7→ a?(α) is
almost incontestable ∗ for a positive dependence (α > 0). This phenomena is not so clear for the
Gaussian copula, where it seems that α 7→ a?(α) is almost constant.

Moreover, we find the same conclusions on the adjustment coefficient R (not plotted on the
previous figures) as Marceau (2007): the adjustment coefficient R(a?) is always increasing with the
dependence. Behind this, there is the intuitive idea the insurer will have much time to gather a
greater amount (when dealing with strong positive dependent risk) of capital if an “extreme” claim
raises.

The impact of the premium principles

Until here, we consider in the numerical applications, the expected value premium principle. We
know that the unimodality of R(a) still holds when using other premium principles †. The expected
value principle does not depend on the tail of the claim size distribution. But for instance, if we
use the exponential premium principle, the tail of the claim size distribution is heavily penalized.
So with the exponential premium, the optimal retention rate (the abcisse of the maximum of the
adjustment coefficient) should be lower than the one when using the expected value principle.

This is shown on the figure (1.8), where the adjustment R(a) coefficient is plotted. As for the
standard deviation premium, it is a compromise between the expected value principle (does not
depend on the tail of the distribution) and the exponential principle (deeply depends on the tail of

∗. if we exclude the gamma(2,2)/exp(1) case.
†. cf. sub section 1.1.3
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the distribution). Hence, we expect that the optimal retention with a standard deviation premium
principle is between the one of the “exponential premium” case and the one of the “expected value
premium” case. That is what we found in the figure (1.9).
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Figure 1.8: Graph of a 7→ R(a) with the exponential premium principle
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Figure 1.9: Graph of a 7→ R(a) with the standard deviation premium principle
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1.3.3 Excess of loss reinsurance

Unimodality

First, let us see numerically the shape of the function L 7→ R(L). We plot this function for the
three studied copulas. We use the same set of parameters as in the case of proportional reinsurance,
that is to say the parameters of copulas are 2.5 for the Clayton, 4.5 for the Frank copula and 0.5
for the Gaussian copula (Pearson correlation around 0.5). We suppose the risk margin are η = 0.2
and ηR = 0.3.

As expected, the graphs (1.10) shows that the function L 7→ R(L) is not always unimodal. With
the gamma distribution G(100, 100) for the claim sizes, the latter function has a local maximum.
Hence the excess of loss is not unimodal when this kind of reinsurance is not very appropriate
(gamma(100,100)/gamma(100,100) has a tiny variance).
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Figure 1.10: Graph of L 7→ R(L) for different copulas
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Impact of the parameter dependence α on optimal retention limit L?

The results obtained through simulations are first presented. The different parameters are :
η = 0.2, ηR = 0.3, n = 10000 (simulation number). As the previous subsection shows, the studied
marginal distributions are in case where the funtion L 7→ R(L) is unimodal.
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Figure 1.11: Graph of α 7→ L?(α) for the Frank copula
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Figure 1.12: Graph of α 7→ L?(α) for the Clayton copula
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Figure 1.13: Graph of α 7→ L?(α) for the Gaussian copula

In the previous figures (1.11,1.12,1.13), an overall increasing trend of L? can be observed for all
marginals. In general, the simulation for excess of loss reinsurance gives better results than for
proportional reinsurance in terms of smoothness of L?. As the trend of L? is opposite of the
a? trend, the conclusion for the insurer is the opposite: the more dependence α (between inter-
occurence times and claim sizes) is strong, the more the insurer will retain risk (optimally).

The following results have been obtained by discretization with the same grids on claim sizes
and claim frequency as the previous subsection.
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Figure 1.14: Graph of α 7→ L?(α) for the Frank copula
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Figure 1.15: Graph of α 7→ L?(α) for the Clayton copula
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Figure 1.16: Graph of α 7→ L?(α) for the Gaussian copula

These results obtained by discretization confirm those by simulation. The function α 7→ L?(α) is
a increasing function. Let us notice that this function is almost constant for negative dependence
and sheerly increasing for positive dependence. It seems also that the optimal limit L? is bounded
in the case of the Frank copula.
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Impact of the premium principle

As we did for proportional reinsurance, we analyse the consequencs of the premium principle.
We know that the unimodality of R(L) is not always ensured when using other premium principles ∗.
The standard deviation and the exponential principles have the good quality to depend on the tail
of the distribution of claim size X. So we expect the optimal retention limit (when it is unique) to
be greater than in the case of the expected value principle.

The following graphs show examples or counter-examples of unimodality of R(L). For instance,
the exponential principle, plotted in figure (1.17), is unimodal with the Clayton copula (for a
Pearson correlation around 0.5). But the Gaussian copula is a counter-example with marginal
gamma(2,2)/gamma(2,2). With the standard deviation principle (graph (1.18)), the adjusment
coefficient R(L) is not unimodal. However, there is a maximum, which is not unique. The graph
(1.19) of the adjustment coefficient R(L) is given in comparison.

If we consider the optimal retention limit as the minimum of retention limits maximizing the
adjustment coefficient, let us notice that the optimal retention limits L? for the three premium
principles are not ordered in the same way as dealing with proportional reinsurance. Actually, with
the standard deviation principle, we have the highest optimal retention limit L?.
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Figure 1.17: Graph of L 7→ R(L) with an exponential premium principle

∗. cf. sub section 1.2.3
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Figure 1.18: Graph of L 7→ R(L) with a standard deviation premium principle
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Figure 1.19: Graph of L 7→ R(L) with an expected value premium principle
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1.4 Special cases of comonotonic, independence and countermono-
tonic copula in proportional reinsurance

In this section, we will study the three particular cases of dependence : the comonotonic, the
independence and the countermonotonic copulas for the bivariate process (W,X). The purpose is to
study some very particular cases, where the Lundberg equation can be solved explicitly. We suppose
the insurer takes proportional reinsurance with the retention rate a. We recall the expression of
the three studied copulas :

– Independence copula: C⊥(u, v) = uv;
– Comonotonic copula (strongest positive dependence): C+(u, v) = min(u, v);
– Countermonotonic copula (strongest negative dependence): C−(u, v) = max(u+ v − 1, 0).

1.4.1 Independence copula

We suppose that the inter-occurence times W and the claim sizes X are independent. So the
adjustment coefficient R is the positive root of the following equation :

MX(ar)MW (−rC(a)) = 1, (1.12)

where MX and MW denote respectively the moment generating function of X and W (if they
exist). In section 1.1, we have seen that R is positive if and only if a > a0 (with a0 = ηR−η

ηR
). In

the following developments, we suppose this situation. From the section 1.1, we also know that the
annual premium rate C(a) is a linear function of a :

C(a) =
E[X]

E[W ]
(η − ηR)︸ ︷︷ ︸
α

+a (1 + ηR)
E[X]

E[W ]︸ ︷︷ ︸
β

.

If we assume claim size and waiting times are exponentially distributed with parameter λ and
δ respectively, then the equation (1.12) becomes

λ

λ− ar
δ

δ + rC(a)
= 1.

In this particular case, the adjustment coefficient has an explicit form:

R(a) =
λ

a
− δ

C(a)
.

The function a 7→ R(a) is a unimodal and differentiable function for a ∈]a0, 1], then the deriva-

tive R′ is R′(a) = −λ
a2

+ δC′(a)
C2(a)

. The maximum R? satisfies the condition

−λ
a2

+
δC ′(a)

C2(a)
= 0 ⇔ λ

a2
=

δβ

(α+ βa)2
.

Thus we need to solve the following second order equation

a2(δβ − λβ2)− 2λαβa− λα2 = 0.
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At last, the optimal retention rate verifies

a2((1 + ηR)ηR) + 2a(1 + ηR)(η − ηR) + (η − ηR)2 = 0,

it come the retention rate which minimises ruin probability is

a? =
ηR − η

ηR(1 + ηR)

[
1 + ηR +

√
1 + ηR

]
.

Let us notice that the optimal retention rate is independent of the parameters of the exponential
distributions. We did numerical applications with η = 0.2 and ηR = 0.3, and we find a∗ = 0.625686.

If we assume that the claim size and claim frequency distributions are gamma with parameter
(α, λ) and (α, δ) respectively, then the equation (1.12) becomes(

λ

λ− ar

)α( δ

δ + rC(a)

)α
= 1 ⇔ λ

λ− ar
δ

δ + rC(a)
= 1.

So this yields to the same calculi as the previous subsection, where we found that the optimal
retention rate is a∗ = ηR−η

ηR(1+ηR)

[
1 + ηR +

√
1 + ηR

]
.

In conclusion, we have that explicit expressions of R can be obtained when considering propor-
tional reinsurance and particular marginals. The previous calculi coud be done with other premium
principles such as variance, exponential or standard deviation principles. In general, the Lundberg
equation (1.12) does not have explicit solution. Futhermore, we could have found explicit expres-
sions of the adjustment coefficient in the case of excess of loss reinsurance (using the truncated
moment generating function MX∧L).

1.4.2 Comonotonicity

The dependence structure between X and W is modelled by the comonotonic copula, also called
the Fréchet upper bound: C+(u, v) = min(u, v). It is well known that F−1

W (U) has the same distri-
bution as W when U is an uniform distribution U(0, 1) ∗. Thus FW (W ) has an uniform distribution
U(0, 1). The comonotoncity can be characterized by saying that X and W are comonotonic if and
only if F−1

X (FW (W )) and W are comonotonic.

Furthermore we suppose that X and W have exponential distribution with parameter λ and δ
respectively, we get

E
[
er(aX−C(a)W )

]
= E

[
er(aF

−1
X (FW (W ))−C(a)W )

]
=

∫ +∞

0
ew( raδ

λ
−rC(a))δe−δwdw

=
δ

δ + rC(a)− raδ
λ

.

Hence the equation E
[
er(aX−C(a)W )

]
= 1 yields to

δ + rC(a)− raδ

λ
= δ ⇔ C(a)− aδ

λ
= 0.

∗. property used for the inversion method random simulation
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Therefore in the case of comonotonicity, when the marginal distribution are exponential, the ad-
justment coefficient R does not exist. Other marginals such as gamma distribution don’t lead to
explicit expressions since we need to explicit expressions of the distribution function.

1.4.3 Countermonotonicity

The last of our three special cases is when the dependence between X and W is countermono-
tonic. The comonotoncity can be characterized by saying that X and W are countermonotonic if
and only if F−1

X (FW (W )) ∗ and W are countermonotonic.

In the special case in which X and W are exponential marginal distributions with respective
parameters λ and δ, we obtain that the adjustment coefficient equation can be derived to be:

E[er(aX−C(a)W )] = E[er(aF
−1
X (FW (W ))−C(a)W )]

=

∫ ∞
0

er(aF
−1
X (FW (w))−C(a)w)fW (w)dw

=

∫ 1

0
er(aF

−1
X (1−u)−C(a)F−1

W (u))du

=

∫ 1

0
er(a

− ln(u)
λ

+C(a)
ln(1−u)

δ
)du

=

∫ 1

0
u
−ra
λ (1− u)

C(a)r
δ du

= E[U
−ra
λ (1− U)

C(a)r
δ ]

= β(1− ra

λ
, 1 +

C(a)r

δ
),

in terms of beta function. We recall that β(x, y) = Γ(x)Γ(y)
Γ(x+y)

†. So when the dependence between

claim size (X ∼ E(λ)) and claim frequency (W ∼ E(δ)) is countermonotonic, the Lundberg equation
is

β(1− ra

λ
, 1 +

C(a)r

δ
) = 1. (1.13)

However, we must notice that the β function is only defined on R?+ ×R?+. Therefore, the equation
(1.13) is only valid if ra

λ < 1. Let us notice that the equation (1.13) is an extension of the equation,
that Albrecher and Teugels found in their article Albrecher & Teugels (2006), which was also
expressed in terms of the β function (with no reinsurance). Their equation is a special case of
(1.13) with a = 1, λ = λ1, δ = λ2 and r = −θ (they use the Laplace transform).

1.5 Conditional structure of dependence

In the first two sections, we study a model with no particuler dependence between claim size (X)
and inter-occurence times (W ), whence we derive results on unimodality of R with proportional and

∗. FW denotes the survival function of the random variable W .

†. where the gamma function is defined by Γ(x) =
∫ +∞
0

xt−1etxdx.
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excess of loss reinsurance. Then in the numerical applications of the section 1.3, the dependence
were structured through different copulas. Now, the hypothesis will take effects on the conditional
distribution of X knowing W . As the previous model, we will study the two cases of reinsurance:
proportional and excess of loss reinsurance.

1.5.1 Hypothesis

For a fixed α > 0, we suppose that the conditional distribution of claim size knowing the claim
frequency distribution is as follows

FW=t
X (x) = e−αtFY1(x) + (1− e−αt)FY2(x), (1.14)

where Y1 and Y2 are independent positive random variables and independent of W . This model
has been studied in Boudreault et al. (2006), where the authors focus on the Gerber-Shiu expected
discounted penalty ∗ function (without reinsurance). From this assumption, useful properties can
be derived:

– FX(x) = MW (−α)FY1(x) + (1−MW (−α))FY2(x),
– MW=t

X (x) = e−αtMY1(x) + (1− e−αt)MY2(x),
– MX(x) = MW (−α)MY1(x) + (1−MW (−α))MY2(x),
– E[Xn] = MW (−α)E[Y n

1 ] + (1−MW (−α))E[Y n
2 ],

where M stands for the moment generating function (if it exists).

1.5.2 Proportional reinsurance

Adjustment coefficient equation

In this subsection, we suppose the insurer takes proportional reinsurance with a retention rate
a ∈ [0, 1]. The adjustment coefficient R is the positive root of the equation

E[er(aX−C(a)W )] = 1, (1.15)

where C(a) denotes the annual premium rate given a retention rate a. Thanks to the previous
properties and if the moment generating functions (of W , Y1 and Y2) exist, the equation (1.15) can
be expressed as

MY1(ar)MW (−rC(a)− α) +MY2(ar) [MW (−rC(a))−MW (−rC(a)− α)] = 1.

As we already know that the adjusment coefficient a 7→ R(a) is unimodal on ]a0, 1] in the case
of proportional reinsurance, this expression is useful only to compute numerical applications. In
this model, no approximations of the Lundberg equation is needed, but there is still no explicit
expression of R †.

∗. cf. next chapter
†. R will be obtained through numerical maximisation.
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Numerical applications

For numerical applications, we suppose that Y1 follows a gamma G(2, 2) distribution and Y1 a
gamma G(3, 3) distribution. For the distribution of W , we choose an exponential distribution E(1)
and a gamma distribution G(2, 2). The α parameter takes four different values: 0 (the well known
independent risk model), 0.2, 0.4 and 0.6.
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Figure 1.20: Graph of a 7→ R(a) when W ∼ G(2, 2) (left) and W ∼ E(1) (right)

The graphs of figure (1.20) shows that the adjustement coefficient R increases when the pa-
rameter α increases. When the parameter α increases, the distribution of Y2 has a stronger impact
on the claim sizes distribution X. So X becomes less risky in terms of variance (V ar[Y2] = 1

3 vs
V ar[Y1] = 1

2) when α increases. Thus the bigger is α, the greater is the adjustment coefficient R.

Indeed, we can proved that when the parameter α increases, the adjustment coefficient R(a)
increases (for all retention rate a), when Yi follows a gamma distribution G(λi, λi) and W follows a
gamma distribution G(χ, δ). The ajdustment coefficient equation can be expressed in the following
form

MY2(ar)MW (−rC(a)) +MW (−rC(a)− α) [MY1(ar)−MY2(ar)] = 1.

Let g be the right hand side of the previous equation. First, we have that V ar(Y1) > V ar(Y2) (i.e.
λ1 < λ2) implies that MY1(ar) ≥ MY2(ar). Second, the moment generating function of W has an
explicit expression:

MW (−rC(a)− α) =

(
δ

δ + rC(a) + α

)χ
,

which is a decreasing function of α. Thus, for all a, r > 0 we have

g(α)
4
= MY2(ar)MW (−rC(a)) +MW (−rC(a)− α) [MY1(ar)−MY2(ar)] .
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is a (strictly) decreasing function of α (for the distribution considered for Y1, Y2 and W ). That is
to say, ∀a, r > 0, α1 < α2 ⇒ g(α1) > g(α2), which implies that Rα1 < Rα2 .

Moreover, the impact of the distribution W is as important on the value of R as α parameter
(cf. figure (1.20)). When W is exponentially distributed E(1), the adjustment coefficient R is
smaller than when W follows a gamma distribution G(2, 2). In consequence when the variance of
W increases, the adjustment coefficient R decreases (a fortiori the optimal adjustment coefficient).
This effect is clearly shown on the figure (1.21), where we plot the function δ 7→ R?(δ).
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Figure 1.21: Graph of δ 7→ R?(δ) when W ∼ G(δ, δ)
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1.5.3 Excess of loss

We assume that the insurer takes excess of loss reinsurance with retention limit L. The adjust-
ment coefficient R is the positive root of the equation

E[er(X∧L−C(L)W )] = 1, (1.16)

where C(L) denotes the annual premium rate given a retention limit L. Again if the moment
generating functions exist, the equation (1.16) becomes

MY1∧L(r)MW (−rC(L)− α) +MY2∧L(r) [MW (−rC(L))−MW (−rC(L)− α)] = 1.

Unimodality of R

We have an explicit expression of the limited moment generating functions MYi∧L when (Yi)i=1,2

follows an Erlang distribution (gamma distribution with integer shape parameter) G(ni, λi)

MYi∧L(r) =

(
λi

λi − r

)ni
Fni,λi−r(L) + erLFni,λi(L),

where Fn,λ(L) is the distribution function of an Erlang G(n, λ), which is equals to

Fn,λ(x) = 1−
n−1∑
i=0

(λx)i

i!
e−λx.

As we proved that the function L 7→ R(L) is unimodal if and only if the function f has a unique
root on ]L0,+∞[ (i.e. the first derivative of R(L) cancels once) ∗.

Assuming this “conditional” relation of dependence, f is defined by

f(L)
4
= E

[
(1(X>L) − C ′(L)W )eR(X∧L−C(L)W )

]
=

[
F Y1(L)MW (−α) + F Y2(L)(1−MW (−α))

]
eRLMW (−RC(L))

−C ′(L) [MY1∧L(R)MW (−α) + (1−MW (−α))MY2∧L(R)]M ′W (−RC(L)),

when conditioning on W . Assuming Yi follows an Erlang distribution G(ni, λi), it yields to †

f(L) = eRLFX(L)
[
MW (−RC(L))− C ′(L)M ′W (−RC(L))

]
− C ′(L)M ′W (−RC(L)) [pαMY1(R)Fn1,λ1−R(L) + (1− pα)MY2(R)Fn2,λ2−R(L)] ,

where pα = MW (−α)) and Fn,λ(L) stands for the distribution function of an Erlang G(n, λ). Just
below, we have plotted the f function for the two examples of numerical applications (i.e. W ∼ E(1)
and W ∼ G(2, 2)). The function L has a unique root since it is a combination of continuous strictly
convex functions (the moment generating function MW and Fn,λ).

∗. cf. sub-section 1.2.2
†. cf. appendix A.9
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Figure 1.22: Graph of L 7→ f(L)

Numerical applications

For numerical applications, we suppose that Y1 follows a gamma G(2, 2) distribution and Y1 a
gamma G(3, 3) distribution. For the distribution of W , we choose an exponential distribution E(1)
and a gamma distribution G(2, 2). The parameter takes four different values: 0 (the independent
risk model), 0.2, 0.4 and 0.6.
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Figure 1.23: Graph of L 7→ R(L) when W ∼ G(2, 2) (left) and W ∼ E(1) (right)



1.6. DEPENDENCE STRUCTURE BASED ON COMMON FRAILTY 49

As noticed in the previous sub-subsection (f has a unique root), the function L 7→ R(L) is uni-
modal. This is clearly seen on the figure (1.23). Furthermore, the same conclusions as the previous
subsection can be drawn from the figure (1.23): the bigger is α, the greater is the adjustment
coefficient R; and when the variance of W increases, the adjustment coefficient R decreases. Again
we plot the graph of δ 7→ R?(δ) when W follows G(δ, δ) (cf. figure (1.24)).
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Figure 1.24: Graph of δ 7→ R?(δ) when W ∼ G(δ, δ)

1.6 Dependence structure based on common frailty

The main assumption of this approach is that the claim sizes (Xi)i and the inter-occurence
times (Wi)i knowing the intensity random variable (Θi)i are conditionnally independent. That is
to say we suppose that (Xi/Θi = θ,Wi/Θi = θ)i≥1 is a sequence of independent and identically
distributed (i.i.d.) random vectors. We also assumes that (Θi)i is a sequence of i.i.d. random
variables. As Θi is assumed to be a discrete distribution on {θ1, . . . , θm}, we have

FX,W (x, t) =
m∑
j=1

P (Θ = θj)F
Θ=θj
X (x)F

Θ=θj
W (t).

Therefore, the adjustment coefficient equation is given by

m∑
j=1

P (Θ = θj)M
Θ=θj
X (r)M

Θ=θj
W (−rC) = 1, (1.17)

when the moment generating functions exist.
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1.6.1 Proportional reinsurance

As in the previous section, we already know, that the adjustment coefficient is unimodal function
of the retention rate a ∈]a0, 1] in the case of proportional reinsurance for all kinds of dependence.
The goal is to see the influence of the distribution of Θ on the adjustment coefficient. When
X/Θ = θj follows a gamma distribution G(α, θj) and W/Θ = θj follows a gamma distribution
G(β, θj) the equation (1.17) becomes

m∑
j=1

P (Θ = θj)

(
θj

θj − ar

)α( θj
θj + rC(a)

)β
= 1.

In the numerical applications, the following two distributions of Θ are studied :

1. P (Θ = 1) = 0.7, P (Θ = 1
2) = 0.2, P (Θ = 1

3) = 0.1, E[Θ] = 0.8333 and V ar(Θ) = 0.0666,

2. P (Θ = 1) = 0.6, P (Θ = 1
2) = 0.25, P (Θ = 1

4) = 0.15, E[Θ] = 0.7625 and V ar(Θ) = 0.0904.

These two specific distributions are called in the rest of this paper Θ1 and Θ2. We choose these two
distributions in order that Θ2 takes smaller values than Θ1 (i.e. bigger means for the distributions
of X and W ).

Furthermore, the claim distributions X and W are
– X/Θ = θj ∼ E(θj) and W/Θ = θj ∼ E(θj),
– X/Θ = θj ∼ G(2, θj) and W/Θ = θj ∼ E(θj),
– X/Θ = θj ∼ G(2, θj) and W/Θ = θj ∼ G(2, θj),
– X/Θ = θj ∼ E(θj) and W/Θ = θj ∼ G(2, θj).
First, the figure (1.25) shows that the adjustment coefficient value strongly depends on the

distribution of claim sizes and frequency. Let e be the ratio of the expectation of X by the
expectation of W , i.e. e = α

β . When this ratio increases, the adjusment coefficient R(a) falls
dramatically. Especially for the optimal adjusment coefficient R?(a), it takes the value around
0.15, 0.11 and 0.07 (0.11, 0.08 and 0.05 respectively) when e equals to 0.5, 1 and 2 in the case of
Θ1 (respectively Θ2).

Second, the distribution of Θ has a big impact on the adjustment coefficient value. When the
expectation of Θ decreases (i.e. E[X] and E[W ] increases), the adjusment coefficent decreases,
especially when e = 0.5 (i.e. X/Θ = θj ∼ E(θj) and W/Θ = θj ∼ G(2, θj)).

1.6.2 Excess of loss reinsurance

Now let us study the more interesting case of excess of loss reinsurance. As usual L denotes
the retention limit of the insurer. The equation (1.17) becomes

m∑
j=1

P (Θ = θj)M
Θ=θj
X∧L (r)M

Θ=θj
W (−rC(L)) = 1. (1.18)

In order to prove the unimodality of R(L), we need to show that f has a unique root on ]L0,+∞[ ∗.

∗. cf. sub-section 1.2.2
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Figure 1.25: Graph of a 7→ R(a) when Θ ∼ Θ1 (left) and Θ ∼ Θ2 (right)

When X and W are exponentially distributed

When we suppose that X/Θ = θj ∼ E(θj) and W/Θ = θj ∼ E(θj), the equation (1.18) is given
by

m∑
j=1

P (Θ = θj)

[
−θj
θj − r

+
−re−(θj−r)L

θj − r

]
θj

θj + rC(L)
= 1.

In this case, we have

f(L) =
m∑
j=1

RpjMW,θj (−RC(L))e−(θj−R)L

[
1 +

(1 + ηR)e−θjL

(θj +RC(L))(θj −R)
(R− θje(θj−R)L)

]
,

where pj = P (Θ = θj) and the subscript θj denotes the conditional corresponding quantity knowing
Θ = θj .

When X and W are gamma distributed

When we suppose that X/Θ = θj ∼ G(α, θj) and W/Θ = θj ∼ G(β, θj), we have that

M
Θ=θj
X∧L (r) =

(
θj

θj − r

)α
Fα,θj−r(L) + erLFα,θj (L),

where Fα,θ denotes the distribution function of the gamma distribution G(α, θ). Thus the equation
(1.18) becomes

m∑
j=1

P (Θ = θj)

[(
θj

θj − r

)α
Fα,θj−r(L) + erLFα,θj (L)

](
θj

θj + rC(L)

)β
= 1.
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In this particular case, the function f is defined as

f(L) =

m∑
j=1

pjFα,θj (L)

[
eRLMW,θj (−RC(L))− (1 + ηR)

MX∧L,θj (R)

E[W ]
M ′W,θj (−RC(L))

]
,

with the same notation as above. The function L has a unique root since it is a combination of
strictly convex functions (the moment generating function MW,θj and Fα,θj ). Just below, we have
plotted the function f for the two distribution of Θ.
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Figure 1.26: Graph of L 7→ f(L)
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Numerical applications

The numerical applications, to illustrate the fact that R is a unimodal function of the retention
limit, have been carried out with the same parameters as in the case of proportional reinsurance. We
consider two examples of the Θ distribution: Θ1 and Θ2. As we did throughout the paper, we use
the four cases for the distribution of (X,W ): (exp(θj)/exp(θj)), (exp(θj)/gamma(2,θj)),
(gamma(2,θj)/gamma(2,θj)) and (gamma(2,θj)/exp(θj)).
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Figure 1.27: Graph of L 7→ R(L) when Θ ∼ Θ1 (left) and Θ ∼ Θ2 (right)

From the figure (1.27), we clealy see that the function L 7→ R(L) is unimodal. Again we can

derive the following conclusions: when the ratio e
4
= E[X]

E[W ] = α
β increases, the adjusment coefficient

R(a) decreases; and when the expectation of Θ decreases, the adjusment coefficent also decreases.
The two considered distributions for Θ are such that E[Θ“1′′ ] = 0.8333 and E[Θ“2′′ ] = 0.7625.



54 CHAPTER 1. OPTIMAL REINSURANCE IN A CONTEXT OF DEPENDENCE

1.7 Conclusion

As the purpose of reinsurance is to mititgate the risk of the insurer, the maximisation of
θ 7→ R(θ) is an important issue. Whence the question of unimodality of R makes sense, and the
question of uniqueness of the optimal retention parameter θ? comes naturally. In section 1.1, we
showed that the insurer’s adjustment coefficient is a unimodal function of the retention level for
proportional reinsurance and all the studied premium principles. But unimodality is not always
guarenteed for excess of loss reinsurance, and an assumption on the first derivative of R(θ) has to
be made in section 1.2.

Since we can’t find explicit expressions of the adjustment coefficient (so the optimal adjustment
coefficient), numerical applications have been carried out through simulation and discretization to
illustrate those results. The section 1.4 presented special cases of dependence and claim distribu-
tion, which lead to explicit results of the optimal retention rate or the proof of its non-existence.
Moreover, the sections 1.5 and 1.6 presents direct applications of sections 1.1 and 1.2 in the two
particular models: a conditional structure of dependence and a dependence structure based on
common frailty.



Chapter 2

Reinsurance and analysis of ruin
measures

Ruin theory is the part of risk theory which focuses on ruin measures. Before Gerber & Shiu
(1998), the analysis of ruin measures such as the deficit at ruin, the claim causing the ruin or the
ruin probability was not unified. It requires special analysis for all of them. Then Gerber & Shiu
(1998) introduced the expected discounted penalty function, whose original goal was to answer two
ruin theory problems at the same time: the deficit at ruin and the time of ruin. The analysis of
the so-called Gerber-Shiu function let us also to derive some explicit and asymptotic results on the
ruin probabilities, the surplus prior to ruin, etc. . .

In this chapter, we study the Gerber-Shiu function in the Cramér-Lundberg model, when we
introduce proportional reinsurance. Unlike the previous chapter, we work with the assumption of
independence between claim severity and claim frequency. The aim is to study the influence of
reinsurance on ruin measures.

This chapter is structured as follows: in the first section, we summarize the main results of
Gerber & Shiu (1998), secondly we introduce reinsurance into the surplus process. Then, numerical
applications will be carried out to illustrate the impact of reinsurance on the surplus prior to ruin
and the deficit at ruin. Finally, we will conclude.

2.1 The Gerber-Shiu function in the Cramér-Lundberg model

The Cramér-Lundberg model is also referred as the classical risk model in the literature. We
consider in this section a risk model where (Nt)t∈R+ , the process of number of claims, follows a
Poisson process of parameter λ (i.e. the claim intervals Wi are i.i.d. ∗ according to an exponential
distribution E(λ)) and (Xi)i∈N? , the sequence of claim sizes, are i.i.d. positive random variable
according to a “generic” random variable X. We assume the independence between the inter-
occurence times (Wi)i and the claim sizes (Xi)i.

∗. independent and identically distributed

55
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Then we define the ruin time of the insurance company as the first time where the insurance

surplus (Ut)t
4
= (u+ Ct− St)t is (strictly) negative

τu = inf(t > 0, u+ Ct− St < 0), (2.1)

where C denotes the premium rate, u the initial surplus and St is the total claim amount at time

t (i.e. St =
Nt∑
i=1

Xi). If ruin does not occur, τu = +∞. The infinite time ruin probability ψ(u) is

defined by ψ(u) = P (τu < +∞). The premium rate C must satisfy the following condition, so as
to avoid almost surely the ruin: E[X − CW ] < 0, which is equivalent to

C = (1 + η)
E[X]

E[W ]
,

where η > 0 is the safety loading. Let us notice that this condition implies that the surplus process
(Ut)t has a positive drift.

2.1.1 The definition of the discounted penalty function and its associated re-
newal equation

The Gerber-Shiu discounted penalty function is defined as

ϕδ(u)
4
= E

[
e−δτw(Uτ− , |Uτ |)1(τ<+∞)/U0 = u

]
. (2.2)

where δ is the force of interest ∗, Uτ− the surplus prior to ruin, and |Uτ | the deficit at ruin. Denoting
by f the joint density of Uτ− , |Uτ | and τ knowing that U0 = u (i.e. f(x, y, t|u) = fU0=u

Uτ− ,|Uτ |,τ
(x, y, t)),

ϕδ can be written as

ϕδ(u) =

∫ +∞

0

∫ +∞

0

∫ +∞

0
e−δtw(x, y)f(x, y, t|u)dtdxdy,

=

∫ +∞

0

∫ +∞

0
w(x, y)f(x, y|u)dtdxdy,

where f(x, y|u) stands for the joint density of Uτ− and |Uτ | knowing that U0 = u. Let us notice
that ϕδ = ψ (the ruin probability), with w(x, y) = 1 and δ = 0.

From its definition (2.2), a renewal equation verified for ϕδ can be derived. First, Gerber and
Shiu obtain the following functional equation by conditioning on the first claim

Cϕ′δ(u) = (δ + λ)ϕδ(u)− λ
∫ u

0
ϕδ(u− x)fX(x)dx− λω(u), (2.3)

where fX is the density of the random variable X (claim size) and ω(u) =
∫ +∞
u w(u, x−u)fX(x)dx.

Let ρ be a positive real. The functional equation (2.3) becomes

Cϕ′δ,ρ(u) = (δ + λ− Cρ)ϕδ,ρ(u)− λ
∫ u

0
ϕδ,ρ(u− x)e−ρxfX(x)dx− λe−ρuω(u), (2.4)

∗. but δ can also be seen as the variable of a Laplace transform
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where ϕδ,ρ(x) = e−ρuϕδ(u) and λ is the parameter of the Poisson process (Nt)t. The well-known
trick to solve (2.4) is to choose ρ = ξ1, solution of the Lundberg equation

δ + λ− Cξ = λf̂X(ξ), (2.5)

where the roots of (2.5) are ξ1 = ρ ≥ 0 and ξ2 = −R ∗ < 0. Note that these two roots are function
of δ, and when δ = 0, we have ρ = 0.

Finally, we obtain the following renewal equation by integrating (2.4) with respect to u

ϕδ = ϕδ ∗ g + h, (2.6)

where ∗ stands for the convolution product, g(x) = λ
C

∫ +∞
0 e−ρzfX(x+ z)dz and

h(x) = λ
C

∫ +∞
x e−ρ(z−x)ω(z)dz.

2.1.2 Solving the renewal equation with the Laplace transform

Applying the Laplace transform on both sides of the equation (2.6), we can solve (2.6)

ϕ̂δ(ξ) =
ĥ(ξ)

1− ĝ(ξ)

=
+∞∑
n=0

(ĝ(ξ))n ĥ(ξ),

where the Laplace transform of g and h are

ĝ(ξ) =
λ

c(ρ− ξ)
(f̂X(ξ)− f̂X(ρ)) and ĥ(ξ) =

λ(ω̂(ξ)− ω̂(ρ))

c(ρ− ξ)
.

So, the Laplace transform of ϕδ is

ϕ̂δ(ξ) =
λ(ω̂(ξ)− ω̂(ρ))

c(ρ− ξ)− λ(f̂X(ξ)− f̂X(ρ))
. (2.7)

The last expression can be simplified when we consider the penalty function w(x, y) = 1. Indeed,
we have in this special case

ĥ(ξ) =
1

c(ρ− ξ)

(
λ

ξ
(1− f̂X(ξ)) +

δ

ρ
− C

)
.

Hence with w(x, y) = 1,

ϕ̂δ(ξ) =
λρ(1− f̂X(ξ)) + ξ(δ − Cρ)

ξρ(λ(1− f̂X(ξ)) + δ − cξ)
, (2.8)

from which we can derive the Laplace transform of the ruin probability with δ = 0,

ψ̂(ξ) =
λ

ξ
× 1− E[X]ξ − f̂X(ξ)

λ(1− f̂X(ξ))− Cξ
.

Dickson (1998) emphasized that the functional equation (2.3) can be solved directly through
its Laplace transform †.

∗. R, called the Lundberg coefficient, plays an important role later
†. cf. appendix B.1



58 CHAPTER 2. REINSURANCE AND ANALYSIS OF RUIN MEASURES

2.1.3 Some explicit results on the joint density of Uτ− and |Uτ |

In this sub-section, we focus on the results on f(x, y|u) and f(x|u), respectively the joint
density of Uτ− and |Uτ |, the density of Uτ− with initial surplus U0 = u. We have by definition that
f(x|u) =

∫ +∞
0 f(x, y|u)dy, which can be simplified to

f(x, y|u) =
f(x|u)fX(x+ y)

FX(x)
∗. (2.9)

In the special case when u = 0, we have

f(x, y|0) =
λ

C
e−ρxfX(x+ y) and f(x|0) =

λ

C
e−ρxFX(x), (2.10)

where FX stands for the survival function of X. With the previous results, we have an explicit
result for ϕδ(0) when the penalty function w(x, y) = 1,

ϕδ(0) =

∫ +∞

0
f(x|0)dx = 1− δ

Cρ
−→
δ→0

λE[X]

C
= ψ(0).

There is a relation between f(x|u) and f(x|0) (so f(x, y|u) and f(x, y|0)) that was first found
by Dickson (1992) in the special case where δ = 0. This relation was extended by Gerber & Shiu
(1998) for all δ ≥ 0, where the ruin probability ψδ(u) is defined by E

[
e−δτ+ρUτ1(τ<+∞)/U0 = u

] †.
f(x|u) =

 f(x|0) e
ρu−ψδ(u)
1−ψδ(0) if x > u ≥ 0

f(x|0) e
ρxψδ(u−x)−ψδ(u)

1−ψδ(0) if 0 < x ≤ u
,

where f(x|0) is given by (2.10). An expression of f(x, y|u) in function of f(x, y|0) can be derived ‡

f(x, y|u) =

 f(x, y|0) e
ρu−ψδ(u)
1−ψδ(0) if x > u ≥ 0

f(x, y|0) e
ρxψδ(u−x)−ψδ(u)

1−ψδ(0) if 0 < x ≤ u
,

where f(x, y|0) is given by (2.10).

2.1.4 Exponentally distributed claim sizes

Now let us study the case where claim sizes are exponentially distributed X ∼ E(β) (i.e.
fX(x) = βe−βx). The Lundberg equation (2.5) becomes

Cξ2 + (Cβ − δ − λ)ξ − βδ = 0, (2.11)

∗. cf. equation (2.26) in the next section with a = 1.
†. the explanation about this defintion of the ruin probability when δ > 0 will follow in the sub-section 2.1.6 on

martingales.
‡. cf. equation (2.26) in the next section with a = 1.
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which leads to ρ =
λ+δ−Cβ+

√
(Cβ−δ−λ)2+4Cβδ

2C . R can also be found from this equation, but it is not
particularly useful, since we have an explicit formula of the ruin probability. We have the following
results

f(x, y|0) =
λβ

C
e−(ρ+β)x−βy and f(x|0) =

λβ

C(β + ρ)
e−βy,

where ρ is given just below. Furthermore, when the penalty function w(x, y) = 1, we have

ϕδ(0) =
λ

C(β + ρ)
.

In this easy example, it is possible to derive the ruin probability ψ0(u), by inverting its Laplace
transform given in (2.8). Indeed, (2.8) becomes

ψ̂0(ξ) =
λ

ξ
×

ξ
β+ξ −

ξ
β

λ( ξ
β+ξ )− Cξ

= λ×
1− β+ξ

β

λξ − Cξ(β + ξ)

=
− ξ
β

(λ− Cβ)ξ − Cξ2
=

λ

βC
× 1

Cβ − λ+ ξ
,

Hence, we find the well-known formula of the ruin probability

ψ0(u) =
λ

βC
e−γu,

where γ = Cβ − λ > 0 because of the positive safety loading constraint E[X − CW ] < 0. When
δ > 0, we can’t invert easily the Laplace transform of ψδ. But as we will see in the subsection 2.1.6,
we have

ψδ(u) =
β −R
β + ρ

e−Ru,

with

ρ =
λ+ δ − Cβ +

√
(Cβ − δ − λ)2 + 4Cβδ

2C
and R =

Cβ − λ− δ +
√

(Cβ − δ − λ)2 + 4Cβδ

2C
.

At last, Gerber & Shiu (1998) get the expression of f(x, y|u) and f(x|u)

f(x|u) =

{
λ

C(R+ρ)e
−(ρ+β)x

[
(β + ρ)eρu − (β −R)e−Ru

]
if x > u ≥ 0

λ(β−R)
C(R+ρ)e

−βx [eRx − e−ρx] e−Ru if 0 < x ≤ u
,

and

f(x, y|u) =

{
βλ

C(β−R)e
−ρxe−β(x+y)

[
(β + ρ)eρu − (β −R)e−Ru

]
if x > u ≥ 0

βλ(β−R)
C(R+ρ) e

−β(x+y)
[
eRx − e−ρx

]
e−Ru if 0 < x ≤ u

.

Let us notice that f(x|u) can be obtained either by integration of f(x, y|u) or using the fact
f(x, y|u) = f(x|u)fX(y) when X ∼ E(β) ∗.

∗. cf. (2.9)
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2.1.5 Asymptotic results

From the renewal equation (2.6), one can apply the key renewal theorem ∗. We are in the case
of a defective renewal equation, hence R > 0. So the equation f̂(−R) = 1 is the Lundberg equation
(2.5) and R = −ξ2. Therefore, we have the following asymptotic result for

ϕδ(u) ∼
+∞

ĥ(−R)

− (ĝ)′ (−R)
e−Ru,

which is equivalent to

ϕδ(u) ∼
+∞

λ
∫ +∞

0

∫ +∞
0 w(x, y)(eRx − e−ρx)fX(x+ y)dxdy

−λ
(
f̂X

)′
(−R)− C

e−Ru. (2.12)

From the previous result (2.12), we can derive asymptotic results for f(x, y|u) and f(x|u)

f(x, y|u) ∼
+∞

λ(eRx − e−ρx)fX(x+ y)

−λ
(
f̂X

)′
(−R)− C

e−Ru and f(x|u) ∼
+∞

λ(eRx − e−ρx)FX(x)

−λ
(
f̂X

)′
(−R)− C

e−Ru,

which yields to, when X ∼ E(β)

f(x, y|u) ∼
+∞

λβ(eRx − e−ρx)e−β(x+y)

−λβ(β −R)−2 − C
e−Ru and f(x|u) ∼

+∞

λ(eRx − e−ρx)FX(x)

−λβ(β −R)−2 − C
e−Ru.

In the special case where the penalty function w(x, y) = 1, the equivalent in +∞ (2.12) becomes

ψδ(u) ∼
+∞

δ

−λ
(
f̂X

)′
(−R)− C

(
1

R
+

1

ρ
)e−Ru −→

δ→0

C − λE[X]

−λ
(
f̂X

)′
(−R)− C

e−Ru †,

which yields to, when X ∼ E(β)

ψδ(u) ∼
+∞

δ

−λβ(β −R)−2 − C
(

1

R
+

1

ρ
)e−Ru.

2.1.6 Martingales

As we have just seen, the adjustment coefficent R or the Lundberg coefficient plays a key
role in the previous sub-section, since it is the constant that makes the equation (2.6) a proper
renewal equation. Furthermore, Gerber & Shiu (1998) has provided another interpretation for the
adjustment coefficient with martingales ‡.

∗. cf. appendix B.2
†. which is called the Cramér-Lundberg approximation in the literature.
‡. cf. the appendix B.3 for the definition of a martingale in a continuous time
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Let us define the process (Vξ,t)t as
(
e−δt+ξUt

)
t≥0

. Because of the stationary and independent

increments of the surplus process (Ut)t
§, (Vξ,t)t is a martingale if and only if

E
[
e−δt+ξUt/U0 = u

]
= eξu. (2.13)

This equation is equivalent to the Lundberg equation. Indeed, we have that the left-hand side of
(2.13) is given by

E
[
e−δt+ξUt/U0 = u

]
= e−δt+ξ(u+Ct)E

[
eξSt

]
= e−δt+ξ(u+Ct)eλt(f̂X(ξ)−1),

since (St)t is a compound Poisson process of parameter λ. Hence, (2.13) is

−δt+ ξ(u+ Ct) + λt(f̂X(ξ)− 1) = ξu,

which is the Lundberg equation (2.5). Hence, either ρ or −R makes (Vξ,t)t a martingale. This
explains the definition of the ruin probability when δ > 0, E

[
e−δτ+ρUτ1(τ<+∞)/U0 = u

]
(i.e. ϕδ

when w(y) = eρy), which is the usual definition P (τ < +∞/U0 = u) when δ = 0.

As we want to calculate the quantity E
[
e−δτ−RUτ1(τ<+∞)/U0 = u

]
, one may wonder if the

equality (2.13) still holds for the ruin time τ ∗ (a stopping time), when ξ = ρ or −R. Hopefully, it
holds thanks to the optional sampling theorem †. That is to say

e−Ru = E
[
e−δτ−RUτ /U0 = u

]
= E

[
e−δτ−RUτ1(τ<+∞)/U0 = u

]
+ 0,

thus we have this useful formula

E
[
e−δτ−RUτ1(τ<+∞)/U0 = u

]
= e−Ru, with δ ≥ 0, u ≥ 0. (2.14)

Furthermore, Gerber and Shiu give a probabilistic interpretation of the quantity e−ρ(x−u) in
their article Gerber & Shiu (1998). They define the stopping time Tx as inf(t > 0, Ut = x) with
x > U0 = u (i.e. the first time the surplus crosses the barrier level x). Again, they apply the
optional sampling theorem ‡ on the martingale (Vρ,t)t. So we have

eρu = E
[
e−δTx+ρUTx/U0 = u

]
= eρxE

[
e−δTx/U0 = u

]
,

which is equivalent to

E
[
e−δTx/U0 = u

]
= e−ρ(x−u).

The last equality is the Laplace transform of the random variable Tx (i.e. Laplace transform of its
density). From this result, one can obtain once again the formula of the sub-section 2.1.3, where
the quantity e−ρx appears in almost every equations.

Finally, the authors get the Laplace transform of the finite ruin probability, which is defined as

ψ(u, t) = P (τ < t/U0 = u),

§. cf. the appendix B.4
∗. defined by (2.1)
†. cf. the appendix B.5
‡. cf. the appendix B.5
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and

ψ̂(ξ, δ)
4
=

∫ +∞

0

∫ +∞

0
e−ξu−δtψδ(u, t)dudt =

1

δξ

λρ(1− f̂X(ξ)) + ξ(δ − Cρ)

λ(1− f̂X(ξ))− cξ
,

and so

φ̂(ξ, δ) =
1/ξ − 1/ρ

λ(1− f̂X(ξ))− cξ
,

where φ(u, t)
4
= 1− ψ(u, t) stands for the survival probability.

2.1.7 Exponentally distributed claim sizes (Continued)

We already present some results when the claim size X is exponentially distributed E(β).
First, we will show the explicit formula of the ruin probability when δ ≥ 0. Since f(x, y|u) =
f(x|u)fX(y) ∗, we have by the relation (2.14)

E
[
e−δτ1(τ<+∞)/U0 = u

]
=
β −R
β

e−Ru.

Thanks to the previous formula and f(x, y|u) = f(x|u)fX(y), we can obtain explicit formula of ϕδ
when w(x, y) = w(y) :

ϕδ(u) = E
[
e−δτw(|Uτ |)1(τ<+∞)/U0 = u

]
=

∫ +∞

0
w(y)βe−βxdy × β −R

β
e−Ru.

This yields to

ϕδ(u) = ŵ(β)(β −R)e−Ru,

from which we can derive the ruin probability ψδ when w(y) = e−ρy

ψδ(u) =
β −R
β + ρ

e−Ru.

If we compare this relation to ψ0(u) = λ
βC e

−γu, the relation is not obvious. But since ρ and
−R are roots of the Lundberg equation (2.11), which is in this case quadratic, the product (−Rρ)
and the sum (ρ−R) of the roots are respectively −δβC and β− δ+λ

C
†. In consequence, the following

equality holds
β −R
β

=
λ

C(β + ρ)
‡.

Thus, it follows

ψδ(u) =
λβ

C(β + ρ)2
e−Ru ⇒ § ψ0(u) =

λ

βC
e−Ru.

∗. which follows from (2.9)
†. If x1 and x2 are roots of the second order equation aX2 + bX + c = 0 (a 6= 0), then we have x1x2 = c

a
and

x1 + x2 = − b
a

.

‡. since we have (β −R)(β + ρ) = β2 + β(−β + δ+λ
C

)− βδ
C

= βλ
C

§. δ = 0⇒ ρ = 0.
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2.1.8 Explicit expressions (Continued)

In the sub-section 2.1.3, we have seen that f(x|u) ¶ and f(x, y|u) ‖ depends on ψδ. So explicit
expressions of the ruin probability ψδ implies explicit expressions of f(x|u) and f(x, y|u). An
explicit expressions of ψδ can be derived from ψ̂δ by locating its singularities. Since we have the
following

ψ̂δ(ξ) =
ĝ(ξ)− ĝ(ρ)

(1− ĝ(ξ))(ρ− ξ)
,

derived from the Laplace transform of the renewal equation (2.6) and the definition of h. Hence,
ψ̂δ is rational if and only if ĝ is a rational function. From the previous equation, it follows the
singularities of ψ̂δ are exactly the roots of

ĝ(ξ) = 1. (2.15)

This equation can have multiple solutions if we consider the complex solutions. Note that −R, the
adjustment coefficient is a root of (2.15), but not ρ, since ĝ(ρ) = ψδ(0).

Using the Heaviside’s expansion formula ∗, the authors get that

ψδ(u) =
m∑
k=1

lim
ξ→−rk

(ξ + rk)ψ̂δ(ξ)e
ξu,

where (−rk)1≤k≤m stands for the distinct roots of (2.15), when rk are simple roots (i.e. multiplicity
equals to one). This leads to

ψδ(u) =

m∑
k=1

ĝ(−rk)− ĝ(ρ)

− (ĝ)′ (−rk)(ρ+ rk)
e−rku, (2.16)

using the previous expression of ψ̂δ.

2.1.9 Mixture of exponentials or the hyper-exponential

Let us consider the case where the claim sizes X are distributed according to a mixture of
exponentials. That is to say

fX(x) =

n∑
j=1

Ajβje
−βjx,

where 0 < β1 < · · · < βn, Ai ≥ 0 and
n∑
i=1

Ai = 1. We have

f̂X(ξ) =

n∑
j=1

Ajβj
βj + ξ

,

¶. the density of Uτ− knowing U0 = u.
‖. the joint density of Uτ− and |Uτ | knowing U0 = u.
∗. cf. the appendix B.6
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thus the Lundberg equation (2.11) becomes

δ + λ− Cξ = λ
n∑
j=1

Ajβj
βj + ξ

.

Let (−rk)1≤k≤m be the roots of the supraequation, which are supposed to be distinct and simple.
We recall that

ĝ(ξ) =
λ(f̂X(ξ)− f̂X(ρ))

C(ρ− ξ)
=
λ

C

n∑
j=1

Ajβj
(βj + ξ)(βj + ρ)

,

from which we have,

ĥ(ξ) =
ĝ(ξ)− ĝ(ρ)

ρ− ξ
=
λ

C

n∑
j=1

Ajβj
(βj + ρ)2(βj + ξ)

,

and

(ĝ)′ (ξ) = − λ
C

n∑
j=1

Ajβj
(βj + ξ)2(βj + ρ)

.

Therefore we get from the relation (2.16)

ψδ(u) =

m∑
k=1

n∑
j=1

Ajβj
(βj+ρ)2(βj−rk)

n∑
j=1

Ajβj
(βj−rk)2(βj+ρ)

e−rku. (2.17)

This formula slightly simplifies when δ = 0 (which implies that ρ = 0),

ψ0(u) =

m∑
k=1

n∑
j=1

Aj
βj(βj−rk)

n∑
j=1

Aj
(βj−rk)2

e−rku,

that has been known for many years. In Gerber & Dufresnes (1991b), we can find a proof that

ψ(u) =
m∑
k=1

Cke
−rku, a special case of (2.17).

2.2 Proportional reinsurance and analysis of ruin measures

In the previous section, we try to summarize the main results of the heavily dense article of
Gerber & Shiu (1998). If some parts may have seemed unclear, full explanations will be given in this
section, that will extend the previous one. As the overall focus of this memoir is reinsurance and
ruin theory, we want to add reinsurance into the Gerber-Shiu analysis of the expected discounted
penalty function in the Cramér-Lundberg model.

We focus on proportional reinsurance per risk, where the insurer keeps a of his risk, the rest
is transfered to the reinsurer. So after reinsurance, the aggregate loss of the insurer is St(a) =∑Nt

i=1Xi(a) = aSt. So the surplus process is

Uat = u+ C(a)t− aSt,

where C(a) is the premium rate net of reinsurance, and a ∈]a0, 1] ∗ the retention limit.

∗. cf. chapter 1
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For the moment, we do not need to specify the premium principle calculation. As Gerber &
Shiu (1998), we consider that (St)t is a compound Poisson process of parameter λ (in particular
we have the independence between claim size and claim frequency).

Before finding the renewal equation, we have some properties on X(a)

FX(a)(x)
4
= P (aX ≤ x) = FX(

x

a
), fX(a)(x) =

1

a
fX

(x
a

)
and f̂X(a)(ξ) = f̂X(aξ).

2.2.1 A renewal equation for ϕa

Again we denote by fa(x, y, t|u), the joint density of Uaτ− , |Uaτ | and τ knowing that Ua0 = u, i.e.

one might write f
Ua0 =u

Ua
τ−
,|Uaτ |,τ

(x, y, z). Let us notice that fa is a defective density, since

ψ(u) =

∫ +∞

0

∫ +∞

0

∫ +∞

0
fa(x, y, t|u)dxdydt < 1,

because we suppose that (Uat )t has a strictly positive drift.

We temporaly drop the index δ on ϕ to simplify the notation. As in the previous section,
we define fa(x, y|u) as the joint density Uaτ− and |Uaτ | knowing that Ua0 = u. Then the expected
discounted penalty function is defined by

ϕa(u)
4
= E

[
e−δτw(Uaτ− , |U

a
τ |)1(τ<+∞)/U

a
0 = u

]
. (2.18)

To get the functional equation, we condition on interval [0, h] by the fact that there is a claim or
not. Remarks, that the probability there are two claims on [0, h] is o(h) since (Nt)t is a renewal
process with continuous inter-occurence times. From (2.18), we have

ϕa(u) = E
[
e−δτw(Uaτ− , |U

a
τ |)1(τ<+∞)/U

a
0 = u

]
= E

[
e−δτw(Uaτ− , |U

a
τ |)1(τ<+∞)/U

a
0 = u,Nh = 0

]
P (Nh = 0)

+E
[
e−δτw(Uaτ− , |U

a
τ |)1(τ<+∞)/U

a
0 = u,Nh = 1

]
P (Nh = 1)

= e−(λ+δ)hϕδ,a(u+ C(a)h)

+

∫ h

0

∫ +∞

0
E
[
e−δ(ζ+t)w(Uaτ− , |U

a
τ |)1(ζ+t<+∞)/U

a
t = u+ C(a)t− x

]
λe−λtfX(a)(x)dxdt

= e−(λ+δ)hϕa(u+ C(a)h) +

∫ h

0

∫ u+C(a)t

0
ϕa(u+ C(a)t− x)λe−(λ+δ)tfX

(x
a

) dx
a
dt

+

∫ h

0

∫ +∞

u+C(a)t
e−δtw(u+ C(a)t, x− C(a)t− u)λe−λtfX

(x
a

) dx
a
dt.
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Now we differentiate the previous relation with respect to h. We get ∗

∂ϕa(u)

∂h
= −(λ+ δ)e−(λ+δ)hϕa(u+ C(a)h) + e−(λ+δ)hC(a)ϕ′a(u+ C(a)h)

+

∫ u+C(a)h

0
ϕa(u+ C(a)h− x)λe−(λ+δ)hfX

(x
a

) dx
a

+

∫ +∞

u+C(a)h
e−δhw(u+ C(a)h, x− C(a)h− u)λe−λhfX

(x
a

) dx
a
.

By taking h = 0, we obtain the equivalent functional equation of (2.3) when we take into account
proportional reinsurance

0 = −(λ+ δ)ϕa(u) + C(a)ϕ′a(u) +

∫ u

0
ϕa(u− x)λfX

(x
a

) dx
a

+

∫ +∞

u
w(u, x− u)λfX

(x
a

) dx
a
,

which is equivalent to

ϕ′a(u) =
λ+ δ

C(a)
ϕa(u)− λ

C(a)

∫ u

0
ϕa(u− x)fX

(x
a

) dx
a
− λ

C(a)
ωa(u), (2.19)

where ωa(u) =
∫ +∞
u w(u, x− u)fX

(
x
a

)
dx
a .

Then we multiply both sides of (2.19) by e−ρu for some positive ρ. Using ϕa,ρ(u)
4
= ϕa(u)e−ρu

and ϕ′a,ρ(u) = ϕ′a(u)e−ρu − ρϕa,ρ(u), we get

C(a)ϕ′a,ρ(u) = (λ+ δ − C(a)ρ)ϕa,ρ(u)− λ
∫ u

0
ϕa,ρ(u− x)e−ρxfX

(x
a

) dx
a
− λe−ρuωa(u).

We now impose ρ to be the root of the following equation

λ+ δ − C(a)ξ = λf̂X(aξ), (2.20)

where the roots are ξ1 = ρ ≥ 0 and ξ2 = −R < 0 as in Gerber & Shiu (1998). Hence, from (2.20)
the integro-differential equation becomes

C(a)ϕ′a,ρ(u) = λf̂X(aρ)ϕa,ρ(u)− λ
∫ u

0
ϕa,ρ(u− x)e−ρxfX

(x
a

) dx
a
− λe−ρuωa(u). (2.21)

As we want to simplify the terms with “ϕa,ρ” in the right-hand side, the goal is to make appear
the Laplace transform of fX . So, we integrate the right-hand side term with respect to u between
0 and z > 0,

λf̂X(aρ)

∫ z

0
ϕa,ρ(u)du− λ

∫ z

0

∫ u

0
ϕa,ρ(u− x)e−ρxfX

(x
a

) dx
a
du− λ

∫ z

0
e−ρuωa(u)du.

By changing the variable and the order of integration, we have∫ z

0

∫ u

0
ϕa,ρ(u− x)e−ρxfX

(x
a

) dx
a
du =

∫ z

0

∫ u

0
ϕa,ρ(y)e−ρ(u−y)fX

(
u− y
a

)
dy

a
du

=

∫ z

0
ϕa,ρ(y)

∫ z

y
e−ρ(u−y)fX

(
u− y
a

)
du

a
dy

=

∫ z

0
ϕa,ρ(y)

∫ z−y

0
e−ρxfX

(x
a

) dx
a
dy.

∗. cf. the appendix B.7 on differentiation of functions defined by integrals.
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Since
∫ u

0 e
−ρxfX

(
x
a

)
dx
a = f̂X(aρ)−

∫ +∞
u e−ρxfX

(
x
a

)
dx
a , we get that∫ z

0

∫ u

0
ϕa,ρ(u− x)e−ρxfX

(x
a

) dx
a
du =

∫ z

0
ϕa,ρ(y)

(
f̂X(aρ)−

∫ +∞

z−y
e−ρxfX

(x
a

) dx
a

)
dy.

Therefore, integrating the left-hand side of (2.21) and using the latter developments on the
integration of the righ-hand side of (2.21), we get

C(a)(ϕa,ρ(z)− ϕa(0)) = λ

∫ z

0
ϕa,ρ(y)

∫ +∞

z−y
e−ρxfX

(x
a

) dx
a
dy − λ

∫ z

0
e−ρuωa(u)du, (2.22)

when z → +∞, we get

0 = ϕa(0)− λ

C(a)

∫ +∞

0
e−ρuωa(u)du.

Since ω̂a(ρ)−
∫ z

0 e
−ρuωa(u)du =

∫ +∞
z e−ρuωa(u)du, we get from (2.22)

C(a)ϕa,ρ(z) = λ

∫ z

0
ϕa,ρ(y)

∫ +∞

z−y
e−ρxfX

(x
a

) dx
a
dy + λ

∫ +∞

z
e−ρuωa(u)du,

multiplying by eρz, it follows

ϕa(z) =
λ

C(a)

∫ z

0
ϕa(y)

∫ +∞

z−y
e−ρ(y+x−z)fX

(x
a

) dx
a
dy +

λ

C(a)

∫ +∞

z
e−ρ(u−z)ωa(u)du.

Finally, the renewal equation which extends (2.6) is

ϕδ,a = ϕδ,a ∗ ga + ha, (2.23)

where ∗ stands for the convolution product,

ga(z) =
λ

C(a)

∫ +∞

z
e−ρ(x−z)fX

(x
a

) dx
a
,

and

ha(z) =
λ

C(a)

∫ +∞

z
e−ρ(u−z)ωa(u)du.

2.2.2 Solving the renewal equation with the Laplace transform

The usual way to solve (2.23) is to take its Laplace transform. So, the equation (2.23) becomes

ϕ̂δ,a = ϕ̂aĝa + ĥa, which is equivalent to ϕ̂a =
ĥa

1− ĝa
.
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Let us work on the Laplace transform of ga and ha. We have

ĝa(ξ) =
λ

C(a)

∫ +∞

0
e−ξz

∫ +∞

z
e−ρ(x−z)fX

(x
a

) dx
a
dz

=
λ

C(a)

∫ +∞

0
e−ρx

∫ x

0
e−ξzeρzdzfX

(x
a

) dx
a

=
λ

C(a)

∫ +∞

0
e−ρx

(
e(ρ−ξ)x − 1

ρ− ξ

)
fX

(x
a

) dx
a

=
λ

C(a)(ρ− ξ)

(
f̂X(a)(ξ)− f̂X(a)(ρ)

)
,

and

ĥa(ξ) =
λ

C(a)

∫ +∞

0
e−ξz

∫ +∞

z
e−ρ(u−z)ωa(u)dudz

=
λ

C(a)

∫ +∞

0
ωa(u)e−ξu

∫ u

0
e−(ξ−ρ)zdzdu

=
λ

C(a)

∫ +∞

0
ωa(u)e−ξu

(
e(ρ−ξ)u − 1

ρ− ξ

)
du

=
λ

C(a)(ρ− ξ)
(ω̂a(ξ)− ω̂a(ρ)) ,

where ωa(u) =
∫ +∞
u w(u, x−u)fX

(
x
a

)
dx
a . Subsequently, the Laplace transform of the Gerber-Shiu

function is

ϕ̂δ,a =
λ(ω̂a(ξ)− ω̂a(ρ))

C(a)(ρ− ξ) + λf̂X(a)(ρ)− λf̂X(a)(ξ)
.

Finally, using the fact ρ is a root of the Lundberg equation (2.20), we have

ϕ̂δ,a =
λ(ω̂a(ξ)− ω̂a(ρ))

−ξC(a) + λ+ δ − λf̂X(a)(ξ)
. (2.24)

If we consider w(x, y) = 1, we have

ωa(u) =

∫ +∞

u
fX

(x
a

) dx
a

= FX

(u
a

)
,

hence, ω̂a(ξ) = aF̂X(aξ) = 1
ξ−

1
ξ f̂X(aξ), using f̂ ′(ξ) = ξf̂(ξ)−f(0) ∗. Since λ+δ−C(a)ρ = λf̂X(aρ),

we get

ĥa(ξ) =
λ

C(a)(ρ− ξ)

(
1

ξ
− 1

ξ
f̂X(aξ) +

δ

λρ
− C(a)

λ

)
.

Therefore, with w(x, y) = 1, the Laplace transform of ϕ (2.24) becomes

ϕ̂δ,a =

λ
ξ (1− f̂X(aξ)) + δ

ρ − C(a)

λ(1− f̂X(aξ)) + δ − C(a)ξ
,

∗. when the Laplace transform exists s, cf. appendix B.6
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which extends (2.8). And when δ = 0 (that implies ρ = 0), we have

ψ̂a =

λ
ξ (1− f̂X(aξ)) + λaE[X]

λ(1− f̂X(aξ))− C(a)ξ
.

If we use Dickson (1998), we can derive the Laplace transform of the solution by taking the
Laplace transform of (2.19)

ϕ̂δ,a(ξ) =
C(a)ϕδ,a(0)− λω̂a(ξ)

C(a)ξ − (λ+ δ) + λf̂X(a)(ξ)
,

since f̂ ′(ξ) = ξf̂(ξ) − f(0) †. But to obtain the equation (2.24), we need to know 0 = ϕa(0) −
λ

C(a)

∫ +∞
0 e−ρuωa(u)du, which was obtained as a limit of the functional equation of ϕa,ρ.

2.2.3 Martingales

As presented in Gerber & Shiu (1998), the roots of the Lundberg equation has a very pleasant
property on the process (Vξ,t)t defined by

(
eδt+ξU

a
t
)
t
. For the same reason used in 2.1.6, the process

V is a martingale if and only if

E
[
e−δt+ξU

a
t /Ua0 = u

]
= eξu.

Once again, we use the fact that St is a coumpound Poisson process of moment generating function
MSt(ξ) = GNt(MX(ξ)), where GNt stands for the probability generating function. Thus, the
“martingale condition” yields to

−δt+ ξ(u+ C(a)t) + λt(f̂X(aξ)− 1) = ξu,

which is the Lundberg equation (2.20). Hence, (Vρ,t)t and (V−R,t)t are martingales. We are now
able to define the ruin probability when δ > 0,

ψδ,a = E
[
e−δτ+ρUaτ 1(τ<+∞)/U

a
0 = u

]
.

Since for all 0 ≤ t ≤ τ , δt + RUat ≥ 0 and hence 0 ≤ e−δτ−RU
a
τ ≤ 1, we can use the optional

sampling theorem ∗ with the stopping time τ ,

E
[
e−δτ−RU

a
τ 1(τ<+∞)/U

a
0 = u

]
= e−Ru, (2.25)

which generalizes (2.14). In the same way, we can have the corresponding relation with the stopping
time Tx and ρ.

Finally, as in Gerber & Shiu (1998), we have an explicit expression of the Laplace transform
of the finite time ruin probabilities. Indeed, the finite time ruin probability ψa(u, t) is defined as
P (τ < t/Ua0 = u), and its Laplace transform

ψ̂a(ξ, δ) =

∫ +∞

0

∫ +∞

0
e−ξu−δtψa(u, t)dudt.

†. cf. appendix B.6
∗. cf. the appendix B.5
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We have the following relation between the discounted penalty function and ψ̂a(ξ, δ) :
ϕδ,a(ξ)
δ when

w(x, y) = 1. Thus, we have

ψ̂a(ξ, δ) =

λ
ξ (1− f̂X(aξ)) + δ

ρ − C(a)

δ(λ(1− f̂X(aξ)) + δ − C(a)ξ)
.

Using the survival probability φa(u, t) = 1−ψa(u, t) (i.e. φ̂a(ξ, δ) = 1
δξ − ψ̂a(ξ, δ)

†), one can obtain

the Laplace tranform of φ̂a.

2.2.4 Some explicit results on the surplus prior ruin, the deficit at ruin and the
ruin probability

In this sub-section, we give our interest on the joint density of the surplus prior ruin Uaτ− and
the deficit at ruin |Uaτ |. At the beginning of this section, we denote by fa the joint density of the
surplus prior ruin Uaτ− , the deficit at ruin |Uaτ | and the ruin time τ . Here are some properties of fa
:

– for x > u + C(a)t, fa(x, y, t|u) = 0, since the event {Uaτ− > u + C(a)τ} is equivalent to
{0 > aSτ};

– when x = u + C(a)t, we have that τ = W1 (ruin at the first claim), which implies that the
differential fa(u+ C(a)t, y, t|u)dydt = λe−λtfX(a)(u+ C(a)t+ y)dydt;

– fa(x, y, t|u) =
(∫ +∞

0 fa(x, z, t|u)dz
)
fX(a)(x+y)

FX(a)(x)
, by conditioning on Uaτ− = x and τ = t.

Let fa(x, y|u) be the joint density of Uaτ− and |Uaτ | defined as fa(x, y|u) =
∫ +∞

0 e−δtfa(x, y, t|u)dt.
Thus, we have∫ +∞

0
e−δtfa(x, y, t|u)dt =

∫ +∞

0
e−δt

(∫ +∞

0
fa(x, z, t|u)dz

)
dt
fX(a)(x+ y)

FX(a)(x)

⇔ fa(x, y|u) = fa(x|u)
fX(a)(x+ y)

FX(a)(x)
. (2.26)

The last relation (2.26) (which extends (2.9)) will have strong consequences in this section.

Using the renewal equation (2.23) in u = 0, we have ϕδ,a = ha(0), which is equivalent to∫ +∞

0

∫ +∞

0
w(x, y)fa(x, y|0)dxdy =

λ

C(a)

∫ +∞

0
e−ρx

∫ +∞

x
w(x, u− x)fX(a)(u)dudx

⇔
∫ +∞

0

∫ +∞

0
w(x, y)fa(x, y|0)dxdy =

∫ +∞

0

∫ +∞

0
w(x, y)

λe−ρx

C(a)
fX(a)(x+ y)dydx.

Hence,

fa(x, y|0) =
λe−ρx

aC(a)
fX

(
x+ y

a

)
⇒ fa(x|0) =

λe−ρx

C(a)
FX

(x
a

)
. (2.27)

This extends the corresponding relation (2.10) without reinsurance and where FX stands for the sur-

vival function. Integrating the last expression with respect to x, it yields to ϕδ,a(0) = λ
C(a)aF̂X(x)

†. cf. appendix B.6
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for w(x, y) = 1. Using aF̂X(aξ) = 1
ξ −

1
ξ f̂X(aξ) ∗ and the fact ρ is the solution of the Lundberg

equation (2.20), we get

ϕδ,a(0) =
C(a)ρ− δ
C(a)ρ

for δ ≥ 0,

with the special case where δ = 0

ϕδ,a(0) =
aλE[X]

C(a)
.

The last two equations extends what was found without reinsurance.

As seen in the first section, there is a relation between fa(x|u) ∗ and fa(x|0) (so fa(x, y|u) †

and fa(x, y|0)). As defined in the sub-section 2.2.3, the ruin probability for all δ ≥ 0 is defined by
ψδ(u) = E

[
e−δτ+ρUaτ 1(τ<+∞)/U

a
0 = u

]
. With this definition, we have the following relations

fa(x|u) =

 fa(x|0) e
ρu−ψδ(u)
1−ψδ(0) if x > u ≥ 0

fa(x|0) e
ρxψδ(u−x)−ψδ(u)

1−ψδ(0) if 0 < x ≤ u
,

where fa(x|0) is given by (2.27). An expression of fa(x, y|u) in function of fa(x, y|0) can also be
derived

fa(x, y|u) =

 fa(x, y|0) e
ρu−ψδ(u)
1−ψδ(0) if x > u ≥ 0

fa(x, y|0) e
ρxψδ(u−x)−ψδ(u)

1−ψδ(0) if 0 < x ≤ u
,

where fa(x, y|0) is given by (2.27). The demonstration, which uses stopping times defined as a
upcrossing of barrier levels, has been put in appendix B.8. In the previous results on the ruin
probability, we don’t explicitely put the link with the retention rate a (because of the numerous
indexes), but they depends on a.

Finally, we have an explicit expressions of the ruin probability ψδ,a in the following special
case. As used by Gerber and Shiu, an explicit expression of ψδ,a can derived from locating the
singularitiesof its Laplace transform. When the penalty function w(x, y) = e−ρy (i.e. ϕ is the ruin
probability), we have

ωa(u) =

∫ +∞

u
e−ρ(x−u)fX(

x

a
)
dx

a
= ga(u)

C(a)

λ
.

Using the definition of ĥa(ξ), we get

ĥa(ξ) =

∫ +∞

0
e−ξz

∫ +∞

z
e−ρ(u−z)ga(z)dudz =

ĝa(ξ)− ĝa(ρ)

ρ− ξ
,

consequently, it yields to

ψ̂δ,a(ξ) =
ĝa(ξ)− ĝa(ρ)

(1− ĝa(ξ))(ρ− ξ)
,

which implies that the singularities of ψ̂δ,a are the roots of ĝa(ξ) = 1.

∗. cf. appendix B.6, that f̂ ′(s) = sf̂(s)− f(0)
∗. the density of Uaτ− knowing Ua0 = u.
†. the density of Uaτ− and |Uaτ | knowing Ua0 = u.
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Using the Heaviside’s expansion formula ‡, we get

ψδ(u) =

m∑
k=1

lim
ξ→−rk

(ξ + rk)ψ̂δ,a(ξ)e
ξu,

where (−ra,k)1≤k≤m stands for the distinct roots of (2.15), when ra,k are supposed to be simple
roots (i.e. their multiplicity equals to one). This leads to

ψδ(u) =

m∑
k=1

1

− (ĝa)
′ (−ra,k)

ĥa(−ra,k)e−ra,ku. (2.28)

2.2.5 Asymptotic results

As done in Gerber & Shiu (1998), we derived some asymptotic results using the key renewal
theorem ∗:

ϕδ,a(u) ∼
+∞

ĥa(−R)

− (ĝa)
′ (−R)

e−Ru,

where ĥa(−R) = λ
C(a)(ρ+R) (ω̂a(−R)− ω̂a(ρ)) and (ĝa)

′ (−R) = λ
C(a)(ρ+R)

((
f̂X

)′
(−aR) + C(a)

λ

)
.

It yields to

ϕδ,a(u) ∼
+∞

λ(ω̂a(−R)− ω̂a(ρ))

−λ
(
f̂X

)′
(−aR)− C(a)

e−Ru. (2.29)

In consequence, the equivalent (2.29) generalizes those of sub-section 2.1.5, as those that follows.
Thanks to the definition of ωa and the definition of the expected discounted penalty function (2.18),
we can identify the equivalent of fa(x, y|u). Indeed, we have

ω̂a(−R)− ω̂a(ρ) =

∫ +∞

0

∫ +∞

0
w(x, y)(eRx − e−ρx)fX(a)(x+ y)dxdy.

Hence, we obtain

fa(x, y|u) ∼
+∞

λ(eRx − e−ρx)fX
(x+y

a

)
−λ
(
f̂X

)′
(−aR)− C(a)

e−Ru,

by integrating with respect to y, we get

fa(x|u) ∼
+∞

λ(eRx − e−ρx)FX
(
x
a

)
−λ
(
f̂X

)′
(−aR)− C(a)

e−Ru.

And finally, we take the special case where w(x, y) = 1, the equivalent (2.29) becomes

ϕδ,a(u) ∼
+∞

δ(1/R+ 1/ρ)

−λ
(
f̂X

)′
(−aR)− C(a)

e−Ru,

using the value of ĥa(ξ) in −R when w(x, y) = 1 developped in sub-section 2.2.2.

‡. cf. appendix B.6
∗. cf. appendix B.2



2.2. PROPORTIONAL REINSURANCE 73

2.2.6 Exponentially distributed claim sizes

We consider in this sub-section that the claim sizes X follows an exponential distribution E(β).
First, the Lundberg equation (2.20) becomes a second order equation

aC(a)ξ2 + (C(a)β − a(δ + λ))ξ − βδ = 0. (2.30)

The discriminant is ∆a = (a(δ+ λ)−C(a)β)2 + 4aβδC(a), which is positive ∀a ∈]a0, 1]. Thus, the
roots ρ and −R are

ρ =
a(δ + λ)− C(a)β +

√
∆a

2C(a)a
and R =

C(a)β − a(δ + λ) +
√

∆a

2C(a)a
. (2.31)

Since f̂X(a)(ξ) = β
β+aξ , the relation (2.24) becomes

ϕ̂δ,a =
λ(ω̂a(ξ)− ω̂a(ρ))

−ξC(a) + λ+ δ − λ β
β+aξ

.

In the special case where the penalty function w(x, y) = w(y), we have ωa(z) = β
a e
−βz

a ŵ
(
β
a

)
.

Thus, we obtain

ω̂a(ξ) =
β
a

ξ + β
a

ŵ

(
β

a

)
.

Therefore, it yields that

ϕ̂δ,a(ξ) =
λβŵ

(
β
a

)
aξ(λ+ δ − C(a)) + δβ

× ρ− ξ
β/a+ ρ

.

One way to obtain explicit of ruin probability ψ0,a is to brutally invert the previous Laplace
transform when w(x, y) = 1 and δ = 0. This was done in the previous section with a = 1. We
will use the method, that Gerber and Shiu used in their article. Applying the result (2.25) of the
martingale part, we have

E
[
e−δτ−RU

a
τ 1(τ<+∞)/U

a
0 = u

]
= e−Ru.

From the explicit results part, we have

fa(x, y|u) = fa(x|u)
fX(a)(x+ y)

FX(a)(x)
= fa(x|u)

β

a
e−

βy
a = fa(x|u)fX(a)(y).

Thanks to the independence between Uaτ− and |Uaτ | (cf. the supra-relation), we have the following
interesting result

E
[
e−δτ−RU

a
τ 1(τ<+∞)/U

a
0 = u

]
=

∫ +∞

0

∫ +∞

0
e−R(−y)e−δτfa(x, y, t|u)dtdxdy

e−Ru =

∫ +∞

0

∫ +∞

0
eRyfa(x, y|u)dxdy

e−Ru =

∫ +∞

0
fa(x|u)dx

∫ +∞

0
eRyfX(a)(y)dy

e−Ru = f̂X(−aR)× E
[
e−δτ1(τ<+∞)/U

a
0 = u

]
.
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Hence,

E
[
e−δτ1(τ<+∞)/U

a
0 = u

]
=
β − aR
β

e−Ru.

If we do the same method with E
[
e−δτw(|Uaτ |)1(τ<+∞)/U

a
0 = u

]
, we get an explicit expression of

ϕδ,a (when w(x, y) = w(y) and X ∼ E(β))

ϕδ,a(u) = ŵ

(
β

a

)(
β

a
−R

)
e−Ru, (2.32)

with R given by (2.31).

Now, we have just to take w(y) = e−ρy (in (2.32)) in order to have an explicit of the ruin
probability ψδ,a(u).

ψδ,a(u) =
β − aR
β + aρ

e−Ru,

since ŵ
(
β
a

)
= 1

β
a

+ρ
. As −R and ρ are roots of (2.31), we have

−Rρ =
−δβ
C(a)a

and ρ−R =
β

a
− δ + λ

C(a)
, hence (

β

a
−R)(

β

a
+ ρ) =

βλ

aC(a)
.

Therefore, we have

ψδ,a(u) =
βλ

aC(a)(βa + ρ)2
e−Ru ⇒ ψ0,a(u) =

aλ

C(a)β
e−Ru, (2.33)

with ρ and R given by (2.31) (and R(δ = 0) = β
a −

λ
C(a)).

Furthermore, the whole sub-section 2.2.4 becomes in the case of exponentially distributed claim
sizes

fa(x, y|0) =
λe−ρx

aC(a)
βe−β

x+y
a ⇒ fa(x|0) =

λe−ρx

C(a)
e−β

x
a .

The following terms are used in the expression of densities fa(x, y|u) and fa(x|u) ∗

eρu − ψδ(u)

1− ψδ(0)
=

(β + aρ)eρu − (β − aR)e−Ru

a(ρ+R)
and

eρxψδ(u− x)− ψδ(u)

1− ψδ(0)
=

(β − aR)e−Ru

a(ρ+R)

(
e(ρ+R)x − 1

)
.

Thus, we get

fa(x|u) =

{
λ

C(a)a(ρ+R)e
−β x

a e−ρx
(
(β + aρ)eρu − (β − aR)e−Ru

)
if x > u ≥ 0

λ(β−aR)
C(a)a(ρ+R)e

−β x
a

(
eRx − e−ρx

)
e−Ru if 0 < x ≤ u

,

and

fa(x, y|u) =


λβ

C(a)a2(ρ+R)
e−β

x+y
a e−ρx

(
(β + aρ)eρu − (β − aR)e−Ru

)
if x > u ≥ 0

λβ(β−aR)
C(a)a2(ρ+R)

e−β
x+y
a

(
eRx − e−ρx

)
e−Ru if 0 < x ≤ u

.

Finally, we are able to derive the equivalents discussed in the previous sub-section. The equiv-
alent of fa(x, y|u) and fa(x|u) can be directly derived from the expressions above when 0 < x ≤ u,
since the only term depending on u in those expressions is the exponential bound e−Ru. The
equivalent of ϕδ,a(u), given in the previous sub-section, is a special case of the relation (2.32). The
equivalent are not particularly useful since we have explicit expressions.

∗. cf. sub-section 2.2.4
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2.2.7 Hyper-exponentially distributed claim sizes

In this sub-section, we analyze the case where claim size distribution is hyper-exponential
(also called a mixture of exponential in the literature). Using the different characterizations of the
mixture of exponential recalled in the sub-section 2.1.9, and the properties of claim size distribution
with proportional reinsurance (listed at the beginning of this section), we have

fX(a)(x) =

n∑
j=1

Ajβj
a

e−
βj
a
x,

where 0 < β1 < · · · < βn, Ai > 0 and
n∑
i=1

Ai = 1. We have

f̂X(a)(ξ) =
n∑
j=1

Ajβj
βj + aξ

.

Therefore, the Lundberg equation (2.30) becomes

δ + λ− Cξ = λ
n∑
j=1

Ajβj
βj + aξ

.

Let (−rk,a)1≤k≤m be the roots of the supraequation, which are supposed to be distinct and simple.
We recall that

ĝa(ξ) = −
λ(f̂X(a)(ξ)− f̂X(a)(ρ))

C(ρ− ξ)
=
aλ

C

n∑
j=1

Ajβj
(βj + aξ)(βj + aρ)

,

Using the Laplace transform of fX(a), we have

ĥa(ξ) =
ĝ(ξ)− ĝ(ρ)

ρ− ξ
=
a2λ

C

n∑
j=1

Ajβj
(βj + aρ)2(βj + aξ)

,

and

(ĝa)
′ (ξ) = −a

2λ

C

n∑
j=1

Ajβj
(βj + aξ)2(βj + aρ)

.

Therefore we get from the relation (2.28)

ψδ,a(u) =

m∑
k=1

n∑
j=1

Ajβj
(βj+aρ)2(βj−ark,a)

n∑
j=1

Ajβj
(βj−ark,a)2(βj+aρ)

e−rk,au. (2.34)

This formula slightly simplifies when δ = 0 (which implies that ρ = 0),

ψ0,a(u) =
m∑
k=1

n∑
j=1

Aj
βj(βj−ark)

n∑
j=1

Aj
(βj−ark)2

e−rku.
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2.3 Impact of proportional reinsurance on the surplus prior to
ruin and the deficit at ruin

In this section, we will give our attention on the surplus prior to ruin and the deficit at ruin.
Numerical applications of these two ruin measures are carried out.

2.3.1 Exponentially distributed claim size

We suppose that the claim size X follows an exponential distribution E(β). We know from the
previous section that the density of Uτ− and the density of |Uτ | knowing Ua0 = u are

fa(x|u) =

{
λ

C(a)a(ρ+R)e
−β x

a e−ρx
(
(β + aρ)eρu − (β − aR)e−Ru

)
if x > u ≥ 0

λ(β−aR)
C(a)a(ρ+R)e

−β x
a

(
eRx − e−ρx

)
e−Ru if 0 < x ≤ u

,

and

fa(y|u) ∗ =

{
λβ

C(a)a(β+aρ)(ρ+R)e
−β y

a

(
(β + aρ)eρu − (β − aR)e−Ru

)
if x > u ≥ 0

λβ
C(a)(β+aρ)e

−β y
a e−Ru if 0 < x ≤ u

.

Note that these notations are confusing, because fa(x|u) denotes the density of the surplus prior
to ruin Uτ− , and fa(y|u) the one of the deficit at ruin |Uτ |.

In the numerical applications, we suppose that δ = 0 (which implies that ρ = 0) and the
premium is calculated according to the expected value principle †. We denote by η = 0.2 and
ηR = 0.3 the respective loading coefficients of the insurer and the reinsurer. And we set β = 2 and
λ = 1.

As expected, the reinsurance greatly mitigates the risk in the sense, the probability, that the
surplus prior to ruin is “big”, is smaller with reinsurance than without. Hence, as shown in figure
2.1, the surplus prior to ruin is concentrated near its mean ‡ with a = 0.5, whereas a = 1 (no
reinsurance), the tail of the distribution of the surplus prior to ruin is bigger.

Second, we observe the same effect of reinsurance on the deficit at ruin in figure 2.2. Note that,
the density of the deficit at ruin is an exponential function, unlike the surplus prior to ruin, which
is a combination of exponential functions. Finally, we notice logically that when the initial capital
u increases, both the surplus prior to ruin and the deficit at ruin decreases.

∗. got by integrating fa(x, y|u) w.r.t. x.
†. cf. the equation (1.1) of the previous chapter
‡. which is λ

C(a)R
(1− e−Ru), obtained by integration of fa(x|u).
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Figure 2.1: Graph of x 7→ fa(x|u) when claim sizes are exponential

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

density of the deficit at ruin [u=4]

y

f(
y|

u)

a=0.5
a=0.75
a=1

0 1 2 3 4 5

0.
00

0.
05

0.
10

0.
15

0.
20

density of the deficit at ruin [u=8]

y

f(
y|

u)

a=0.5
a=0.75
a=1

Figure 2.2: Graph of y 7→ fa(y|u) when claim sizes are exponential

2.3.2 Hyper-exponentially distributed claim size

The study of the distribution of the deficit at ruin and the surplus prior to ruin can be carried
out when there is an explicit expression of the ruin probability ∗. An explicit expression has been
found when claim size is hyper-exponential (also called mixture of exponential), so we can study
the impact of reinsurance.

∗. cf. subsection 2.2.4
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For the numerical applications, we will take the example of Actuarial mathematics ∗, where
fX(x) = 1

2

(
3e−3x + 7e−7x

)
and λ = 3. We know in this case that the roots of the Lundberg

equation are rational †. And we have that the ruin probability is ψ(u) = 24
35e
−x + 1

35e
−6x (when

δ = 0 and no reinsurance). With proportional reinsurance, we can solve the Lundberg equation
(2.30). Thus, we have ψ(u) = C1e

−r1u + C2e
−r2u with

C1 =
r2(3− ar1)(7− ar1)

21(r2 − r1)
and C2 =

r1(7− ar2)(3− ar2)

21(r1 − r2)
,

where the roots are

r1 =
−3 + 10C(a)

a + 3
√

∆a

2C(a)
, r2 =

−3 + 10C(a)
a − 3

√
∆a

2C(a)
and ∆a = 1 +

(
4
C(a)

aλ

)2

.

Note that in this particular case, the Lundberg equation is a second order equation.

Hence, we have the following relation for the surplus prior to ruin

fa(x|u) = fa(x|0)

{
1−C1e−r1u−C2e−r2u

1−C1−C2
if x > u ≥ 0

C1e−r1(u−x)+C2e−r2(u−x)−C1e−r1u−C2e−r2u

1−C1−C2
if 0 < x ≤ u

,

where fa(x|0) = 3
2C(a)

(
e−3x

a + e−7x
a

)
. The expression of the density of the deficit at ruin is a bit

more complicated

fa(y|u) =

 3
2C(a)

(
e−3 y

a + e−7 y
a

)
1−C1e−r1u−C2e−r2u

1−C1−C2
if x > u ≥ 0

3
2C(a)(1−C1−C2)K(y) if 0 < x ≤ u

,

where

K(y) =

(
r1C1e

−r1ue−3 y
a

3− ar1
+
r2C2e

−r2ue−3 y
a

3− ar2
+
r2C2e

−r2ue−7 y
a

7− ar2
+
r1C1e

−r1ue−7 y
a

7− ar1

)
.

The results are plotted in the graphs 2.3 and 2.4. The remarks of the previous subsection still
apply. The reinsurance compress the density of ruin measures to its mean.

∗. cf. example 12.10 of Bowers et al. (1986)
†. cf. Gerber & Dufresnes (1991a)
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Figure 2.3: Graph of x 7→ fa(x|u) when claim sizes are hyper-exponential
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Figure 2.4: Graph of y 7→ fa(y|u) when claim sizes are hyper-exponential
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2.4 Consequences of reinsurance on the ruin probability

Let us study the effects of reinsurance on the ruin probability. As done in the previous section,
we consider two claim size distribution: exponential E(1) ∗ and a mixture of three exponentials
E(0.46), E(0.92) and E(1.38) with respective weights 0.1, 0.36 and 0.54 †. Expressions of ruin prob-
abilities with proportional reinsurance when claim sizes are either exponential or hyper-exponential
are derived in the subsections 2.2.6 and 2.2.7 (resp.).

The calculi have been done for two premium principles: the usual expected value and the stan-
dard deviation. The main difference between the “simple” expected value principle and the more
sophisticated standard deviation principle is the latter depends on the tail of the tail distribution.
In consequence, we will see the impact of the premium principles.
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Figure 2.5: Graph of u 7→ ψa(u)

In the figure 2.5, we see the ruin probability in zero ψa(0) is greater with reinsurance a = 0.5
than without reinsurance a = 1. This is logic since the following relation obtained in section 2.2.4
holds

ψa(0) =
aλE[X]

C(a)
,

which is a decreasing function of a with the two considered premium principles.

Furthermore, the ruin probability with reinsurance falls stronger to 0 than without reinsurance.
The functions ψ1/2 downcrosses the functions ψ1 around 6 for the exponential distribution and 7

∗. thus, the mean and the variance are 1
†. thus, the mean of the mixture is 1 and its variance 1.362949
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for the mixture. Thus, beyond those values, the ruin probabilities are smaller with reinsurance
than without.

Finally, we also see that the ruin probability is logically greater with the mixture of exponential
distribution than with the exponential distribution since the variance is greater.

We can draw the same conclusions when using the standard deviation principle, but the effect
of the claim size distribution is less striking. Indeed, with a premium principle taking the variance
of the claim size distribution into account, such as the standard deviation, “heavy” tail distribution
are more penalized than the exponential claim size case. Again, around the treshold 6, the ruin
probability ψ1/2 downcrosses the ruin probability ψ1.

2.5 Conclusion

Along this chapter, we have studied the impact of proportional reinsurance on the Gerber-Shiu
function, and its application on various ruin measures. We did numerical applications for three
of those: the deficit at ruin, the surplus prior to ruin and the ruin probability, with the explicit
expressions found when claim size distribution is either exponential or hyper-exponential.

We found that the distribution of the surplus prior to ruin is lower and less scattered with
reinsurance than without. A similar effect is noticed on the distribution of deficit at ruin, whereas
for the ruin probability, the reinsurance mitigates the risk only beyond a certain treshold.





Chapter 3

Explicit expressions of the ruin
probability with phase-type
distributions

In the ruin theory literature, the Sparre Andersen model had been studied in all its aspects.
Asmussen & Rolski (1991) introduced phase-type distributions in the computation of ruin proba-
bilities. Phase-type distributions come from the queuing theory, and are a general class of positive
random variable distributions. They are part of the matrix exponential distributions. Asmussen
& Rolski (1991) follows the work of Neuts, which applied queuing theory result in other fields.
A complete review of phase-type distributions in the general area of risk theory was done Bladt
(2005).

This section is dedicated to explicit expressions of the ruin probability in the Sparre Andersen
model. So we work in a more restricted model than Chapter 1, since we assume the independence
between claim sizes and waiting times. We use phase-type distributions in the computation of ruin
probabilities for two purposes: (1) to implement ruin probabilities in the R package actuar ∗ for a
wide range of claim size distributions and (2) to analyze the effects of proportional reinsurance on
ruin probabilities.

Phase-type distributions is a powerful tool to derive explicit expression of ruin probability in
the Sparre Andersen model. This is mainly due to the fact that the aggregate claim size St is
phase-type when claim sizes (Xi)i are phase-type.

We briefly recall the Sparre Andersen risk model:
– the claim arrival process (Nt)t is a renewal process;
– let (Wi)i be the sequence of i.i.d. † inter-occurence times ‡ and (Xi)i be the sequence of i.i.d.

claim sizes. We suppose ∀i, j ≥ 0, Xi ⊥Wj ;
– let u and C be resp. the initial capital and the premium rate. The surplus process is defined

∗. Goulet (2007)
†. independent and identically distributed
‡. we denote by G the distribution function of Wi.
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by

Ut = u+ Ct−
Nt∑
i=1

Xi︸ ︷︷ ︸
St

;

– defining the time of ruin τu as the first time the surplus is strictly negative, the ruin probability
is ψ(u) = P (τu < +∞).

First, we present phase-type distributions, and then its application in ruin theory. Third,
we briefly present the implementation of ruin probabilities in the R package actuar with phase-
type distributions. Finally various numerical applications of ruin probabilities with proportional
reinsurance are carried out.

3.1 Definition of phase-type distributions

A phase-type distribution PH(π, T,m) (π a row vector of Rm, T a m ×m matrix) is defined
as the distribution of the time to absorption in the state 0 of a Markov jump process, on the set
{0, 1, . . . ,m}, with initial probability (0, π) and intensity matrix ∗

Λ = (λij)ij =

(
0 0

t0 T

)
,

where the vector t0 is −T1m and 1m stands for the column vector of 1 in Rm. This means that if
we note (Mt)t the associated Markov process of a phase-type distribution, then we have

P (Mt+h = j/Mt = i) =

{
λijh+ o(h) if i 6= j
1 + λiih+ o(h) if i = j

.

The matrix T is called the sub-intensity matrix and t0 the exit rate vector.

The cumulative distribution function of a phase-type distribution is given by

F (x) = 1− πeTx1m,

and its density by
f(x) = πeTxt0,

where eTx denote the matrix exponential defined as the matrix serie
+∞∑
n=0

Tnxn

n! . The computation

of matrix exponential is studied in details in subsection 3.4, but let us notice that when T is a
diagonal matrix, the matrix exponential is the exponential of its diagonal terms.

∗. matrix such that its row sums are equal to 0 and have positive elements except on its diagonal.
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The moments of a phase-type distribution are given by (−1)nn!πT−n1. Since phase-type dis-
tributions are platikurtic or light-tailed distributions, the Laplace transform exists

f̂(s) = π(−sIm − T )−1t0,

where Im stands for the m×m identity matrix.

One property among many is the set of phase-type distributions is dense with the set of positive
random variable distributions. Hence, the distribution of any positive random variable can be
written as a limit of phase-type distributions. However, a distribution can be represented (exactly)
as a phase-type distribution if and only if the three following conditions are verified

– the distribution has a rational Laplace transform;
– the pole of the Laplace transform with maximal real part is unique;
– it has a density which is positive on R?+.

Here are some examples of distributions, which can be represented by a phase-type distribution
– exponential distribution E(λ) : π = 1, T = −λ and m = 1.
– generalized Erlang distribution G (n, (λi)1≤i≤n) :

π = (1, 0, . . . , 0),

T =



−λ1 λ1 0 . . . 0

0 −λ2 λ2
. . . 0

0 0 −λ3
. . . 0

0 0
. . .

. . . λn−1

0 0 0 0 −λn


,

and m = n.
– a mixture of exponential distribution of parameter (pi, λi)1≤i≤n :

π = (p1, . . . , pn),

T =



−λ1 0 0 . . . 0

0 −λ2 0
. . . 0

0 0 −λ3
. . . 0

0 0
. . .

. . . 0
0 0 0 0 −λn


,

and m = n.
– a mixture of 2 (or k) Erlang distribution G(ni, λi)i=1,2 with parameter pi :

π = (p1, 0, . . . , 0︸ ︷︷ ︸
n1

, p2, 0, . . . , 0︸ ︷︷ ︸
n2

),

T =



−λ1 λ1 0 0 . . . 0 0

0
. . . λ1 0

. . . 0 0
0 0 −λ1 0 0 0 0

0 0
. . . −λ2 λ2 0 0

0 0 0 0
. . .

. . . 0

0 0 0 0 0
. . . λ2

0 0 0 0 0 0 −λ2


,
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and m = n1 + n2.

3.2 Ruin probability

In Asmussen & Rolski (1991), we have the following results: in the Cramér Lundberg model,
when claim sizes are phase type PH(π, T,m), the ruin probability is given by

ψ(u) = π+e
Qx1m, (3.1)

with Q = T + t0π+ and π+ = −λ
cπT

−1 where λ is the parameter of the Poisson process. In other
words, the ruin probability is phase-type distributed PH(π+, Q,m).

In the Sparre Andersen model (i.e. arrival times have a general distribution G), the ruin
probability is still phase type PH(π+, Q,m), but the sub-intensity matrix is the matrix solution of
the fixed point equation

Q = Φ(Q), (3.2)

with Φ(K) = T + t0πĜ(K) and Ĝ(K) =
∫ +∞

0 eKxG(dx); and the initial probability is given by

π+ =
1t(Q− T )

c1tt0
,

where 1t denotes the tranpose of vector 1. The proofs of this result can be found in Asmussen
(1992), mainly based on the fact that a geometric compound of phase-type distributions is still
phase-type. The application of phase-type distributions in insurance are also well described in
Hipp (2005).

3.3 Proportional reinsurance

We can extend the previous results, if we consider the insurer takes proportional reinsurance
on his risk. As usual, we denote by a ∈]a0, 1] (cf. the first part for the constant a0) the retention
rate, we have that the density of the risk X(a) net of reinsurance is

fX(a)(x) =
1

a
fX

(x
a

)
.

If we suppose that X has a phase-type distribution PH(π, T,m), we get

fX(a)(x) =
1

a
πe

Tx
a t0 = πe

T
a
x(−T

a
1m).

Hence, the random variable X(a) is still phase-type distributed with parameters PH(π, Ta ,m). So,
all the previous explicit expressions of ruin probability still hold with proportional reinsurance, we
just have to change the subintensity matrix and the premium rate.
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3.4 Computation of the ruin probability

The main problems of implementing this phase-type approach is to find Q in the Sparre An-
dersen model and to compute the exponential matrix eQu in both risk models.

Asmussen & Rolski (1991) eases the calculus of matrix Q in the Sparre Andersen model. If the
distribution of inter-occurence times are phase-type PH(ν, S, n), then we have

Ĝ(K) = (Im ⊗ ν) (−K ⊕ S)−1 (Im ⊗ s0) ,

where ⊗ denotes the Kronecker product and ⊕ the Kronecker sum ∗. Therefore, the function Φ can
be easily calculated.

However, there is an underlying issue when calculating the matrix Q as the fixed point solution
of Q = Φ(Q) (with initial point T ). We don’t know if the function Φ is contractant. In the
literature, we didn’t find if it is true under certain conditions or wrong in all cases. So we can’t use
the Banach fixed point theorem †, which guarantee both the numerical stability and the convergence
to the unique solution of (3.2). Note that the Banach fixed point theorem has the good quality to
ensure the time of convergence to be exponential.

Now let us consider the problem of computing eQu. We recall that

eQu =
+∞∑
n=0

Qnun

n!
.

There are various methods to compute the matrix exponential, Moler & Van Loan (2003) makes a
deep analysis of the efficiency of different methods. In our case, we choose a decomposition method.
We diagonalize the n× n matrix Q and use the identity

eQu = PeDuP−1,

where D is a diagonal matrix with eigenvalues on its diagonal and P the eigenvectors. As we want
to compute π+e

Qu1m for different values of u. We compute

ψ(u) =
m∑
l=1

eλlu π+PMlP
−11m︸ ︷︷ ︸

Cl

,

where λi stands for the eigenvalues of Q, P the eigenvectors and Ml = (δilδlj)ij (δij is the symbol
Kronecker, i.e. equals to zero except when i = j). As the matrix Ml is a sparse matrix with just
a 1 on the lth term of its diagonal. The constant Ci can be simplified. Indeed, if we denote by Xl

the lth column of the matrix P (i.e. the eigenvector associated to the eigenvalue λl) and Yl the lth

row of the matrix P−1, then we have

Cl
4
= π+PMlP

−11m = π+Xl ⊗ Yl1m.

Despite Q is not obligatorily diagonalizable, this procedure will often work, since Q may have
a complex eigenvalue (say λi). In this case, Ci is complex but as ψ(u) is real, we are ensured there

∗. cf. appendix B.9
†. cf. appendix B.10
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is j ∈ [[1, . . . ,m]], such that λj is the conjugate of λl. Thus, we get

eλiuCi + eλjuCj = 2cos(=(λi)u)e<λiuπ+<(Xi ⊗ Yi)1m − 2sin(=(λi)u)e<λiuπ+=(Xi ⊗ Yi)1m ∈ R,

where < and = stands resp. for the real and the imaginary part. And so we retrieve the fact that
the ruin probability can be expressed as a sum of exponential and sinusoidal functions, which has
been illustrated in Drekic et al. (2004). At the time, we are writing this memoir, we are currently
working to compute matrix exponential when the matrix is not diagonalizable.

Finally, the ruin probability can be calculated by the function ruinProb of the package actuar.
Details of usage can be found in appendix B.11, the usage will probably change in a very soon future.
It is higly recommended to use the help directly in R with help(ruinProb).

3.5 Numerical applications

For these numerical applications, we consider three cases of claim size distributions:

1. X follows an exponential distribution E(1), E[X] = 1 = V ar[X];

2. X is a mixture of exponential distribution E(0.46), E(0.92) and E(1.38) with respective weights
0.1, 0.36 and 0.54. Thus, E[X] = 1 and V ar[X] = 1.362949;

3. X follows a generalized Erlang ∗ distribution with λ1 = 10
6 , λ2 = 10

3 and λ3 = 10. We have
E[X] = 1 and V ar[X] = 0.46.

We choose these three particular distribution in order to have the same expectation but different
variances.

As for the inter-occurence time, we don’t want to redo the exponential case (the Cramér-
Lundberg model). That’s why we choose an erlang distribution G(2, 1) and a hyper-exponential
E(2

3) and E(4
9) with respective weights 1

3 and 2
3 . They have the same mean, but different variances

(resp. 2 and 4
3).

The retention rate is either 1 (no reinsurance) or 0.5 (half of the risk is transferred to the
reinsurer). And finally, we choose two premium principles, the expected value and the standard
deviation. The definition can be found in section 1.1.3.

Result are plotted in the figures (3.1), (3.2), (3.3) and (3.4). Firstly, we notice that the ruin
probabilities are lower with the Erlang(2) inter-occurence times than with the hyper-exponential.
For instance, the ruin probability ψa(0) are lower with the Erlang(2) distribution than with the
hyper-exponential. And the tail of the ruin probability ψa decreases sharper with the Erlang(2)
claim arrivals.

Secondly, the remarks on the impact of the retention rate on the ruin probability are not exactly
the same: proportional reinsurance decreases the ruin probability ψa(u) even for small values of
initial capital u. Moreover, we can see that ψ1/2 falls sharpier to 0 than ψ1, except in the figure
(3.4).

∗. one way to characterize it is to say that it is a sum of independent but not identical exponential distributions.
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Finally, the impact of the premium principle is the same as the previous numerical applications.
The standard deviation principle reduces the differences of the ruin probability for the different
claim size distributions.
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Figure 3.1: Graph of u 7→ ψa(u) when W ∼ G(2, 2) with the expected value principle
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Figure 3.3: Graph of u 7→ ψa(u) when W is hyper-exponential with the expected value principle
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3.6 Conclusion

This very short chapter studied the impact of proportional reinsurance and the inter-occurence
distribution on the ruin probability in the Sparre Andersen model. The conclusions on the effects
of reinsurance are almost the same as in the Cramér-Lundberg model: reinsurance mitigates the
ruin probability for every initial capital. Furthermore, we have seen the more the inter-occurence
distribution is “risky” (i.e. big variances), the more the ruin probability is small.

All this phase-type mechanic will be included in the next version of the R package actuar ∗. The
new version will provide functions to compute the density, the distribution function, the moments,
etc. . . for the phase-type distribution in addition to the function ruinProb for the ruin probability
through phase-type distributions. Another function computing the adjustment coefficient will be
added, hence all the numerical applications on the adjustment coefficient in a context of dependence
of Chapter 1 could be done with the packages actuar and copula †.

∗. Goulet (2007)
†. Yan & Kojadinovic (2007)



Conclusion

In this memoir, we dealed with three topics linked to reinsurance and ruin theory. We covered
various subjects such the Gerber-Shiu with proportional reinsurance, optimal reinsurance according
to the adjustment coefficient and phase-type distributions to compute ruin probabilities.

First, we studied the adjustment coefficient with reinsurance in a context of dependence between
claim severity and claim frequency. The optimization of the adjustment coefficient with respect to
retention parameter raised the underlying issue of its unimodality. We showed it is always ensured
with proportional reinsurance. However for excess of loss reinsurance, a condition has to be imposed
in order to have unimodality. Second, introducing proportional reinsurance in the Gerber-Shiu
function (in the Cramér-Lundberg model) leaded to interesting conclusions. With proportional
reinsurance, the distributions of the deficit at ruin and the surplus prior to ruin are compressed
to their mean. Concerning the ruin probability, proportional reinsurance minimizes the risk only
beyond a certain treshold of capital. Third, we have seen that phase-type distributions ease the
calculation of ruin probabilities in the Sparre Andersen model. We presented the implementation
of those computations in the R package actuar as well as the impact of proportional reinsurance
on ruin probabilities.

Each of the three different chapters leaves many questions open for further research. For
instance, it remains to study a combination of excess of loss and proportional reinsurance, as well
as non constant risk margins η and ηR. Two obvious extensions to Chapter 2 would be excess
of loss reinsurance and analysis of the Gerber-Shiu function in the Sparre Andersen model (based
on Gerber & Shiu (2005)). Finally, one could compare approximations of ruin probabilities with
phase-type distributions and the Beekman’s formula (cf. Beekman’s Convolution formula in Kaas
(2006)), for heavy-tailed claim size distribution.

In conclusion, we could consider optimal reinsurance in a dynamic setting, such that Schmidli
(2001) did with proportional reinsurance in the Cramér-Lundberg model. Phase-type distributed
inter-occurence times could also be analyzed in the Gerber-Shiu function.
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Appendix A

Optimal Reinsurance in a Context of
Dependence

A.1 Proof: ∂2h
∂r2 (r, a) < 0

We recall that:

∂h

∂r
(r, a) =

E
[
(aX − C(a)W )er(aX−C(a)W )

]
E
[
er(aX−C(a)W )

] .

So, we have:

∂2h

∂r2
(r, a) =

E
[
(aX − C(a)W )2er(aX−C(a)W )

]
E
[
er(aX−C(a)W )

] −

(
E
[
(aX − C(a)W )er(aX−C(a)W )

]
E
[
er(aX−C(a)W )

] )2

. (A.1)

(A.1) is positive since it is a variance of an Esscher transform. Therefore, the function r 7→ h(r, a) is convex,
since the function h is C2 on R+.

In the case of excess of loss reinsurance, we have the function h is defined as

h(r, L) = ln
(
E[er(X∧L−C(L)W )]

)
.

The analogy of equation (A.1) for excess of loss reinsurance is

∂2h

∂r2
(r, L) =

E
[
(X ∧ L− C(L)W )2er(X∧L−C(L)W )

]
E
[
er(X∧L−C(L)W )

] −

(
E
[
(X ∧ L− C(L)W )er(X∧L−C(L)W )

]
E
[
er(X∧L−C(L)W )

] )2

,

which is again positive. So the function r 7→ h(r, L) is convex, using the same argument as the previous
demonstration.

A.2 Admissibility condition on ’a’

We want to solve
aE[X]− C(a)E[W ] = 0,
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where C(a) is given by
E(X)

E(W )
(η − ηR + a(1 + ηR)).

Thus the equation above becomes

a
E(X)

E(W )
=
E(X)

E(W )
(η − ηR + a(1 + ηR)) ⇔ −aηR = η − ηR.

Hence, it yields to

a =
ηR − η
ηR

.

A.3 Sufficient condition for unimodality

Let us show the following proposition for φ : R 7→ R

Proposition. If φ is a C2 function, φ is an unimodal function on I if the equation φ′(t) = 0 has a unique
root t?, such as φ′′(t?) < 0.

Proof. As φ′′ is a continuous function (since φ is C2), it exists ε > 0, such as ∀t ∈]t? − ε, t? + ε[, φ′′(t) < 0.
This implies that φ′ is a strictly decreasing function on ]t? − ε, t? + ε[, which cancels in t?.
As φ′ is a continuous function and φ′(t) = 0 has a unique root on I, φ′(t) is strictly positive on I∩]−∞, t?[ and
strictly negative on I∩]t?,+∞[. Otherwise, φ′ would cancel more than once. Hence, φ is strictly increasing
on I∩]−∞, t?[, reaches its maximum on t? and then is strictly decreasing I∩]t?,+∞[.

Note that the condition “the equation φ′(t) = 0 has a unique root t?” is crucial. If the latter equation
has multiple roots, we are not ensured that φ is unimodal on I, since t? may only be on a local maximum.
An easy counter-example of non-unimodality is when φ(t) = t sin(t) on R.

A.4 Implicit function theorem

Theorem 1. Let F be a bivariate C1 function on some open disk with center in (a, b), such that F (a, b) = 0.
If ∂F

∂y (a, b) 6= 0, then there exists an h > 0, and a unique function ϕ defined for ]a− h, a+ h[, such that

ϕ(a) = b and ∀|x− a| < h,F (x, ϕ(x)) = 0.

Moreover on |x− a| < h, the function ϕ is C1 and

ϕ′(x) = −
∂F
∂x (x, y)
∂F
∂y (x, y)

∣∣∣∣∣
y=ϕ(x)

.

A.5 a 7→ f(a) has a unique root

We recall that f is defined as

a 7→ E
[
(X − C ′(a)W )eR(X(a)−C(a)W )

]
.
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Thus the first derivative with respect to a is given by

f ′(a) = RE
[
(X − C ′(a)W )2eR(X(a)−C(a)W )

]
+R′(a)E

[
(X − C ′(a)W )(X(a)− C(a)W )eR(X(a)−C(a)W )

]
.

Thus we have, f ′(a) > 0 when f(a) = 0⇔ R′(a) = 0.

Furthermore, we have that f(a0) = −ηRE[X] < 0 and f(1) > 0. Indeed,

f(1) = E

[
(X − (1 + ηR)

E[X]

E[W ]
W )eR(X−(1+η)

E[X]
E[W ]

W )

]
> E

[
(X − (1 + η)

E[X]

E[W ]
W )eR(X−(1+η)

E[X]
E[W ]

W )

]
.

The right-hand side of the previous inequality has the same sign as ∂h
∂r (R, 1), which is positive, as we have

already seen. This implies that f is contiunous function which is strictly increasing each time it crosses the
abcisse line, such that f(a0) < 0 and f(1) > 0. So f cancels exactly once.

In figure (A.1), there are some examples of the so called f function for the different distributions used
in numerical applications.
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Figure A.1: Graph of a 7→ f(a)

A.6 Proof: ’g’ is a decreasing function with exponential premiums

We want the sign of Cov(X, ekX), with X a positive random variable and k a positive real.
Let φ and ϕ be the functions xekx and ekx respectively. These two functions are convex on R?+ since they
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are C2, φ′′(x) = (2k + x2)ekx > 0 and ϕ′′(x) = k2ekx. Thus, we have the minoration

Cov(X, ekX)
4
= E[XekX ]− E[X]E[ekX ] ≥ E[X]ekE[X] − E[X]ekE[X] = 0,

using the Jensen inequality, E[Φ(X)] ≥ Φ(E[X]) for a convex function Φ.

A.7 Proof: properties of X ∧ L as a function of L

We have

X ∧ L =

{
X if X ≤ L
L if X > L

.

So differentiating with respect to L, we get

∂X ∧ L
∂L

(L) =

{
0 if X ≤ L
1 if X > L

= 1(X>L).

Let us study the derivative of 1(X>L) with respect to L. The indicator function is differentiable on R+

except on X. Indeed, we have

lim
L→X−

1(L>L) − 1(X>L)

L−X
= lim
L→X−

−1

L−X
= +∞,

and

lim
L→X+

1(L>L) − 1(X>L)

L−X
= lim
L→X+

0 = 0.

So
∂1(X>L)

∂L

a.s.
= 0 since X is continuous.

A.8 L 7→ f(L) has multiple roots

In the case of excess of loss reinsurance, f is defined as

f(L) = E
[
(1(X>L) − C ′(L)W )eR(X(L)−C(L)W )

]
.

Let us notice lim
L−→+∞

f(L) = 0 since both functions 1(X>L) and C ′(L) = (1 + ηR) F̄X(L)
E[W ] tends to null. But

the solution L = +∞ is not a solution mathematically and in practice. Because this involves that the insurer
takes no reinsurance at all.

We also have

f(L0)
4
= E

[
(1(X>L) − C ′(L)W )e0

]
= −ηRF̄X(L0) < 0.

Let us study the first derivative of f

f ′(L) = −E
[
C ′′(L)WeR(X(L)−C(L)W )

]
+RE

[
(1(X>L) − C ′(L)W )2eR(X(L)−C(L)W )

]
+R′(L)E

[
(1(X>L) − C ′(L)W )(X(L)− C(L)W )eR(X(L)−C(L)W )

]
.

We implicitly supposed that X is continuous, otherwise C ′′(L) is not defined since the density of X is used.

Furthermore, in this case, C ′′(L) = −(1 + ηR) fX(L)
E[W ] < 0. The problem is f is not an increasing function.

Thus, it is difficult to be sure that f has one root.



98 APPENDIX A. OPTIMAL REINSURANCE IN A CONTEXT OF DEPENDENCE

In figure (A.3), there are some examples of the so called f function for the different distributions used
in numerical applications, with the expected value principle. The corresponding L 7→ R(L) graphs with
these particular marginals can be found in section 1.3.3-“Unimodality”. Note that f has multiple roots in
gamma(100,100)/gamma(2,2).

In figures (A.2) and (A.4), we plotted the f function with respectively the exponential and the standard
deviation premium calculation principle. As we can see, the graph reveals that f may have an “asymptotic”
root (+∞) or one root (< +∞). The corresponding L 7→ R(L) graphs can be found in section 1.3.3-“The
impact of the premium principles”.
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Figure A.2: Graph of L 7→ f(L) with the exponential principle
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Figure A.3: Graph of L 7→ f(L) with the expected value principle
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Figure A.4: Graph of L 7→ f(L) with the standard deviation principle
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A.9 Truncated moment generating function

We study the truncated moment generating function defined as (X follows a gamma distribution G(α, λ))

MX∧L(t)
4
=

∫ +∞

0

etx∧LfX(x)dx =

∫ L

0

etxfX(x)dx+

∫ +∞

L

etLfX(x)dx =

∫ L

0

etxfX(x)dx+etLFX(L,α, λ)

=

∫ L

0

etx
xα−1λαe−λx

Γ(α)
dx+ etLFX(L,α, λ) =

λα

(λ− t)α

∫ L

0

xα−1(λ− t)αe−(λ−t)x

Γ(α)
dx+ etLFX(L,α, λ).

Hence, we have
MX∧L(t) = MX(t, α, λ)FY (L,α, λ− t) + etLFX(L,α, λ),

where Y follows a gamma distribution G(α, λ− t)).





Appendix B

Consequences of reinsurance

B.1 Comment by Dickson (1998)

Dickson (1998) proposed a new way to get the expression (2.7). The functional equation (2.3) becomes
when taking its Laplace transform

ϕ̂δ(ξ)ξ − ϕδ(0) =
δ + λ

C
ϕ̂δ(ξ)−

λ

C
ϕ̂δ(ξ)f̂X(ξ)− λ

C
ω̂(ξ),

thus

ϕ̂δ(ξ) =
λω̂(ξ)− Cϕδ(0)

δ + λ− C(a)ξ − λf̂X(ξ)
,

which is equivalent to (2.7) since Cϕδ(0) = λω̂(ρ) and ρ verifies the Lundbeg equation (2.5). When supposing
that the penalty function w(x, y) = 1, Dickson finds (2.8).

B.2 Key renewal theorem

The Key Renewal theorem

Theorem 2. Consider the integral equation Z = f ∗ Z + z. If we have R such that f̂(−R) = 1 (i.e. the
function x 7→ eRxf(x) is a density), then we have

Z(x) ∼
+∞

ẑ(−R)

−
(
f̂
)′

(−R)
e−Rx.

This version of the key renewal theorem deals with defective or excessive renewal equation.
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B.3 Definition of a martingale

Definition. Let (Xt)t be a continuous process on the probability space (Ω,F ,P). (Xt)t is a Ft-martingale
if

– (Xt)t is Ft-adapted, i.e. ∀t > 0, (Xt)t is Ft-mesurable;
– (Xt)t is integrable, i.e. ∀t > 0, E[|Xt|] < +∞;
– ∀t > s,E[Xt/Fs] = Xs.

In general, the filtration Ft is the natural filtration of the process (Xt)t, i.e. σ(Xt).

B.4 Explanations on the process Vξ

The first two conditions of the definition of a martingale are verified by (Vξ,t)t. Since, the integrability
condition is

E[|Vξ,t|] = E
[
e−δt+ξUt

]
≤ e−δt+ξ(u+Ct) < +∞,

the second condition is verified. The first one is also verified for Ft = σ(St), because (Vξ,t)t is a continuous
composition (exponential functional) of mesurable process : the compound Poisson process St.

B.5 Explanations on the optional sampling theorem and its ap-
plication

The Doob’s Optional Sampling theorem

Theorem 3. Let (Xt)t be a martingale on the probability space (Ω,F ,P), and σ, τ two bounded stopping

times, such that σ
a.s.
≤ τ . Then

E[Xτ/Fσ]
a.s.
= Xσ.

We used this theorem in two different cases. First, Xt = V−R,t, σ = 0 and τ = τ ∧n = min(τ, n). Hence,
we have

e−Ru = E
[
e−δτ∧n−RUτ∧n/U0 = u

]
.

Since ∀t > 0, e−δτ∧n−RUτ∧n < 1 (hence the right-hand side of the previous relation converges when n→ +∞),
we have just to tend n to +∞ (τ ∧ n→ τ) to get the expected relation. Secondly, we use the theorem with
Xt = Vρ,t, σ = 0 and τ = Tx ∧ n = min(Tx, n). Thus, we obtain

eρu = E
[
e−δTx∧n+ρUTx∧n/U0 = u

]
.

Since ∀t > 0, e−δTx∧n−RUTx∧n < eρx, the right-hand side of the previous relation converges when n→ +∞.
Hence

eρu = E
[
e−δTx+ρUTx/U0 = u

]
.

With proportional reinsurance, we use the same reasoning.
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B.6 Inverse Laplace transform with the Heaviside’s expansion for-
mula

We recall the definition of the Laplace transform:

Definition. Let f be a piecewise continuous function. The Laplace transform of f is the unique function f̂
defined by

f̂(s) =

∫ +∞

0

e−stf(t)dt.

The Laplace transform is an application L : f 7→ f̂ , also written L(f). Note that the sectionally continuous-
ness of f is a sufficient condition for existence of Laplace transform.

The Laplace transform has many properties. Some of them are listed here : linearity, first and second

translation, change of scale. And also the derivation property f̂ (n)(s) = snf̂(s) −
∑n−1
i=0 s

if (n−1−i)(0), the

integral property L
(
t 7→

∫ t
0
f(u)du

)
(s) = f̂(s)

s , the initial value f(+∞) = lim
s→0

sf̂(s) if f(+∞) exists, and

the final value f(0) = lim
s→+∞

sf̂(s).

The inverse Laplace transform:

Definition. Let F be a continuous function. The inverse Laplace transform of F is the unique function f
such that

L(f) = F.

The inverse Laplace transform is also written L−1(f).

The inverse Laplace transform has the corresponding properties of the Laplace transform, such as
linearity, first and second translation, change of scale. But also the derivation property L−1(f (n))(t) =

(−1)ntnL−1(f)(t), the integral property L−1
(
s 7→

∫ +∞
s

f(u)du
)

(s) = L−1(f)(t)
t .

If we take the Laplace transform of the exponential, we have

f(t) = eat and f̂(s) =
1

s− a
, s > a.

Whence the inverse of Laplace transform of F (s) = 1
s−a is L−1(F )(t) = eat. One obvious way to find the

inverse of Laplace transform of a fraction is to do a partial fraction expansion, such that

F (s) =

n∑
i=1

Ai
s− αi

⇔ L−1(F )(t) =

n∑
i=1

Aie
αit,

where (αi)1≤i≤n are the roots of the denominator of F .

The Heaviside Expansion Formula is the application of this principle:

Proposition. Let P and Q be two polynoms such that deg(P ) ≤ deg(Q) = n (i.e. the degree of P is not
bigger than the degree Q). If Q has n distinct roots (αi)1≤i≤n, then it follows

L−1

(
P

Q

)
(t) =

n∑
i=1

P (αi)

Q′(αi)
eαit.
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If the degree of P is strictly bigger than the degree of Q, then the fraction can be written as P (s)
Q(s) =

R(s) + P1(s)
Q(s) with deg(P1) ≤ deg(Q).

If the roots of the denominator of the fraction F are not simple, say the root r of multiplicity m, we
have

F (s) =
N(s)

(s+ r)m
=

m∑
i=1

Bi
(s− r)i

,

then

L−1(F )(t) =

m∑
i=1

βi
ti−1

(i− 1)!
ert,

where

βm−i =
1

i!
lim
s→r

∂i
(
s 7→ P (s)(s−r)m

Q(s)

)
∂si

(s).

Note that if there are some complex roots, the trigonometric functions make their appearance in the
inverse Laplace transform, complete results on the Laplace transform can be found in Spiegel (1965).

B.7 Derivative of a function defined as a integral

Theorem 4. Let a function f : X × [a, b] 7→ R, and 2 functions u, v : X 7→ [a, b], with the set X ⊂ R. We
suppose that f is C2 ∗ on X × [a, b], and u, v are C1 on X. Then the function φ defined as

φ(x) =

∫ v(x)

u(x)

f(x, t)dt

is C1 on X and its derivative is

φ′(x) =

∫ v(x)

u(x)

∂f

∂x
(x, t)dt+ v′(x)f(x, v(x))− u′(x)f(x, u(x)).

B.8 Relations between fa(x, y|0) and fa(x, y|u)

This section of the appendix briefly recalled the main points of the demonstration of the relation between
f(x|0) and f(x|u), that is presented in Gerber & Shiu (1998). By Ta (resp. Tb), we denote the stopping
times defined as the first time upcrosses the level a (b) with a ≤ u < b. If the surplus starts above the
“barrier level” a (b), the process will have to drop below a (b) and then upcross the barrier.

Let Ta,b be Ta ∧ Tb = min(Ta, Tb) the minimum of the two stopping times. Then we define the “comple-
mentary” functions

A(a, b|u) = E
[
e−δTa,b1(UTa,b=a)/U0 = u

]
= E

[
e−δTa1(Ta<Tb)/U0 = u

]
,

and
B(a, b|u) = E

[
e−δTa,b1(UTa,b=b)/U0 = u

]
= E

[
e−δTb1(Ta>Tb)/U0 = u

]
.

∗. twice differentiable with continuous second derivative
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This two functions have some interesting properties

1. A(a, b|u) +B(a, b|u) = E
[
e−δTa,b/U0 = u

]
2. for all constant k, A(a, b|u) = A(a+ k, b+ k|u+ k) and B(a, b|u) = B(a+ k, b+ k|u+ k)

For a′ < a ≤ u < b < b′, the authors of Gerber & Shiu (1998) derive the following system{
A(a, b′|u) = A(a, b|u) +B(a, b|u)A(a, b′|b)
B(a′, b|u) = A(a, b|u)B(a′, b|a) +B(a, b|u)

,

then taking a′ = +∞, a = 0, b = x and b′ = +∞, they solve this linear system. Finally, they get{
A(0, x|u) = eρxψ(u)−eρuψ(x)

eρx−ψ(x)

B(0, x|u) = eρu−ψ(u)
eρx−ψ(x)

.

At last using that f(x|u) = f(x|0)
B(0,u|0) (because if ruin occurs with a surplus equal to x before the ruin, then

the surplus must have cross u < x), they obtain the first part of the relation between f(x|0) and f(x|u) (i.e.
when 0 ≤ u < x).

To show the second part of the relation (when x ≤ u), they use duality on the process U?t defined as
Ut if ruin never occurs, otherwise, −UT0−t for 0 ≤ t ≤ T0 and Ut for t > T0. T0 is the time of recovery,
since it is defined as the time where the surplus first upcrosses 0 (which implies ruin has occured). From
this transformation, they derived an equality between B(0, u|0) and A(−u, 0| − x), from which they derived
the second part. When introducing proportional reinsurance, it does not affect the proof, since the surplus
process Uat is still a linear combinaison of a coumpound Poisson process.

B.9 Kronecker product and sum

The Kronecker product A⊗B is defined as the mn×mn matrix

A⊗B = (Ai1,j1Bi2,j2)i1i2,j1j2 ,

when A is a m ×m matrix of general term (Ai1,j1)i1,j1 and B a n × n matrix of general term (Bi2,j2)i2,j2 .
Note that the Kronecker can also be defined for non-square matrixes.

The Kronecker sum A⊕B is given by the mn×mn matrix

A⊗B = A⊗ Im +B ⊗ In,

where Im and In are the identity matrixes of size m and n. This definition is right only for square matrixes
A and B.

B.10 Banach fixed point theorem

The Banach Fixed Point theorem

Theorem 5. Let E be a complete normed vector space (i.e. a Banach space) and f : E 7→ E be a continuous
function. If there exists 0 < k < 1, such that ∀(x, y) ∈ E2,

||f(x)− f(y)|| < k||x− y||,

(i.e. f is contractant), then there is a unique fixed point x? ∈ E, such that

f(x?) = x?.
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So any sequence (f(xn))n will converge exponentially to the fixed point x?, since

||x? − xn|| <
kn

1− k
||x1 − x0||.

B.11 Function ruinprob in actuar

It is higly recommended to use the help directly in R with help(ruinProb). The current help is:

Description:
Compute the infinite time ruin probability in the model of Cramér-Lundberg or Sparre Andersen, using the
results of Gerber-Dufresnes (1988) and Asmussen-Rolski (1991).

Usage:
ruinProb(model="CramerLundberg",param,premRate)

Arguments:
model a string indicating the model used, either Cramér-Lundberg (default value) or Sparre Andersen
param a list with the following components: either lambda, pi, T and m in the CramÈr-Lundberg model

or nu, S, n, pi, T, m in the Sparre Andersen model; where lambda is the Poisson process parameter
(of the claim arrival process), pi,T,m the parameters of the claim size phase-type distribution and
nu,S,n the parameters of the inter-occurence times phase-type distribution

premRate the premium rate (which must respect the positive safety loading constraint)
Value:

Function ruinProb computes the ruin probability and returns the ruin probability as a function of one
parameter, the initial capital.

Author:
Vincent Goulet and Christophe Dutang

References:
Asmussen, S. and Rolski, T. (1991). Computational methods in risk theory: A matrix algorithmic
approach. Insurance: Mathematics and Economics, 10:259-274

Gerber, H. U. and Dufresnes, F. (1991). Three methods to calculate the probability of ruin.
Astin Bull., 19(1):71-90

Examples:

## Cramer Lundberg - exponential claim sizes
resExpPsi <- ruinProb("CramerLundberg", list( lambda=3 ,pi=1, T=2, m=1),
1.1*3/2)

gridU <- seq(0,5/2,length.out=100) #vector of initial capitals
resExp <- resExpPsi(gridU)

## Cramer Lundberg - mixture of 3 exponential claim sizes
## E(1), E(3) and E(6) with respective weights 1/3, 1/2, 1/6

Lambda <- 3
matT <- array(c(-1,0,0,0,-3,0,0,0,-6),c(3,3))
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weight <- c(1/3,1/2,1/6)
beta <- c(1,3,6)
premiumRate <- sum(weight/beta)*Lambda*1.1

resMixExpPsi <- ruinProb("CramerLundberg",
list( lambda=Lambda ,pi=poids, T=matT, m=3), premiumRate)

gridU <- seq(0,5*sum(weight/beta),length.out=100)#vector of initial capitals
resMixExp <- resMixExpPsi(gridU)

## Sparre Andersen - Dickson (1992) numerical applications
## Dickson, D. (1992). On the distribution of surplus prior to ruin.
## North American Actuarial Journal

S <-array(c(-1,0,0,1,-1,0,0,1,-1),c(3,3))
probnu <- c(.4,.2,.4)

matT <- array(c(-1,0,0,0,1,-3,0,0,0,3,-2,0,0,0,2,-4),c(4,4))
probpi <- c(.2,.3,.4,.1)

resErlangPsi <- ruinProb("SparreAndersen",
list( pi=probpi,T=matT,m=length(probpi),
nu=probnu,S=S,n=length(probnu) ), 1)

gridU <- seq(0,5*16/15,length.out=100)
resErlang <- resErlangPsi(gridU)
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